Investigation of energy consumption in the course of plastering machine’s work

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.73336

Keywords:

technological equipment set, hydraulic drive, mortar, pipeline, transportation, energy efficiency

Abstract

The study focuses on the operating principle of the hydraulic technological equipment set for finishing works. The main objective of the study is to determine the amount of energy consumed in the process of the set operation. This energy is spent on mixing the finishing mortar and on the work output of the mortar pump piston when it is acting on the mortar to create the required feed pressure in the pressure main. We consider a scheme of energy consumption of the operating equipment set and propose a method of calculating the specific energy consumption of the selected set components. The method consists in calculating the energy consumption of each component and the total energy input, which allows determining the required capacity of the power unit.

The research findings allow calculating the energy input in the process of operation and, thereby, estimating the energy balance of such unit. They can be used by design engineers to further improve the performance of the designed machines in terms of their rational energy consumption.

The proposed method allows analyzing the share of energy consumption of each element of the hydraulic equipment set and outlining steps to further improve the parameters of the hydraulic circuit.

Author Biography

Bogdan Korobko, Yuri Kondratyuk Poltava National Technical University Pershotravnevyi ave., 24, Poltava, Ukraine, 36011

PhD, Associate professor

Department of construction machinery and equipment

References

  1. Gonçalves, J. P., Tavares, L. M., Toledo Filho, R. D., Fairbairn, E. M. R., Cunha, E. R. (2007). Comparison of natural and manufactured fine aggregates in cement mortars. Cement and Concrete Research, 37 (6), 924–932. doi: 10.1016/j.cemconres.2007.03.009
  2. Aprianti, E., Shafigh, P., Zawawi, R., Abu Hassan, Z. F. (2016). Introducing an effective curing method for mortar containing high volume cementitious materials. Construction and Building Materials, 107, 365–377. doi: 10.1016/j.conbuildmat.2015.12.100
  3. Chen, X., Wu, S., Zhou, J. (2013). Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete. Construction and Building Materials, 47, 419–430. doi: 10.1016/j.conbuildmat.2013.05.063
  4. Hots, V. I. (2003). Betony i budivelni rozchyny. Кyiv: КNUBA, 472.
  5. Parfenov, E. P. (2003). Opyit mehanizatsii stroitelno–otdelochnyih rabot v sovremennyih usloviyah. Mehanizatsiya stroitelstva, 2, 5–7.
  6. Baladinskyi, V. L., Nazarenko, I. I., Onyshchenko, O. H. (2002). Budivelna tekhnika. Poltava: KNUBA–PNTU, 463.
  7. Nazarenko, I. I., Tumanska, O. V. (2004). Mashyny i ustatkuvannia pidpryiemstv budivelnykh materialiv. Kyiv: Vyshcha shk., 590.
  8. Kukoba, A. T. (2000). Hidropryvidnyi rozchynonasos podviinoi dii. Poltava, 142.
  9. Pedrajas, C., Rahhal, V., Talero, R. (2014). Determination of characteristic rheological parameters in Portland cement pastes. Construction and Building Materials, 51, 484–491. doi: 10.1016/j.conbuildmat.2013.10.004
  10. Kosky, P., Balmer, R., Keat, W., Wise, G. (2013). Chapter 10 – Manufacturing Engineering. Exploring Engineering. Third Edition, 205–235. doi: 10.1016/b978-0-12-415891-7.00010-8
  11. Trapote-Barreira, A., Cama, J., Soler, J. M., Lothenbach, B. (2016). Degradation of mortar under advective flow: Column experiments and reactive transport modeling. Cement and Concrete Research, 81, 81–93. doi: 10.1016/j.cemconres.2015.12.002
  12. Yemelianova, I. A., Baranov, A. M., Protsenko, O. M. (1999). Vyznachennia neobkhidnoi potuzhnosti dlia perekachuvannia betonnoi sumishi po truboprovodu pry bezimpulsnii podachi. Vybratsyy v tekhnyke y tekhnolohyiakh, 2, 67–69.
  13. Onyshchenko, A. H., Vasylev, A. V., Korobko, B. O. (2000). Metodyka uchYota soderzhanyia vozdukha v stroytelnyikh rastvorakh dlia povyishenyia effektyvnosty ykh transportyrovanyia po truboprovodam. Mekhanyzatsyia stroytelstva, 9, 23–25.
  14. Shalimo, T. E., Tulupov, I. I., Markovskiy, M. F. (1985). Osobennosti truboprovodnogo transporta betonnyih smesey betononasosami. Mn.: Nauka i tehnika, 175.
  15. Emelyanova, I. A., Dobrohodova, O. V., Anischenko, A. I. (2010). Sovremennyie stroitelnyie smesi i oborudovanie dlya ih prigotovleniya. Kharkiv: Timchenko, 146.
  16. Onischenko, A. G., Vasilev, A. V., Ustyantsev, V. U. (2004). Gidrofitsirovannaya shtukaturnaya stantsiya SSh–4G. Mehanizatsiya stroitelstva, 5, 6–7.

Downloads

Published

2016-08-24

How to Cite

Korobko, B. (2016). Investigation of energy consumption in the course of plastering machine’s work. Eastern-European Journal of Enterprise Technologies, 4(8(82), 4–11. https://doi.org/10.15587/1729-4061.2016.73336

Issue

Section

Energy-saving technologies and equipment