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Highly detailed, very accurate ground magnetic investigations were jointly conducted by Ro-
manian and Ukrainian researchers on a segment of the Peceneaga-Camenas Fault (PCF) in
order to reveal the potential of geomagnetic method for active faults investigating. The survey
succeeded to outline the PCF track in the area covered by recent sediments, and provide in-
sights on the fault structure and in-depth development. 2D numerical modeling has been em-
ployed for interpreting the obtained geomagnetic anomaly. Lateral variations in magnetization,
as suggested by the model, reveal the complex geological architecture in the area, hidden by
recent deposits. The zero magnetization outlined in the central part of the survey lines has been
interpreted in geodynamic terms, as a breccias zone created along PCF track by its active dy-
namics.

Key words: magnetic survey, magnetization, residual geomagnetic anomaly, modeling, faults,
geodynamics.

NMeyeHexcko-KameHCKUM pa3nom: reomarHMTHas
OoLeHKa aKTUBHOIO TEKTOHMYECKOro KOHTaKTa

O J1. bBewymsbro, M. Opnrok, J1. 3nacHeaH, A. PomeHeu,
J1. AHacmachbro, . MakapeHko, 2014

C uenblo oLeHKN BO3MOXHOCTEN reOMarHMTHOro MeToAa npu M3yyYeHuy akTUBHbIX Pa3fioMoB
COBMECTHO C PYMbIHCKMMMW 1N YKPaNHCKUMUN y4eHbIMM BbInn BbINONHEHbI BICOKOTOYHbIE HA3eM-
Hble uccrnepoBaHus NedeHexcko-KameHckoro pasnoma (MKP). Cbemka nossonuna npocre-
AnTb nonoxeHwe MNKP nog coBpeMeHHbIMM 0cagoyHbiMM 06pa3oBaHMAMU U NOMAYYUTb Npea-
CTaBreHuve o ero rnmybuHHoON cTpykType. NHTepnpeTaums BbiaeneHHbIX B4oMb Nnpodune MarHnT-
HbIX aHOManum Gbina BbINONHEHa C MOMOLLbIO BYMEPHOTO YMCNEHHOro MogenvMpoBaHus. B coot-
BETCTBMM C MOAeNbio, nateparnbHble BapnaLmm HaMarHU4eHHOCTU nccneayemomn 30Hbl cBuae-
TENbCTBYIOT O CIIOXXHOM reoflorMyeckoM CTPOEHUW, CKPbITOM noA monoabiMu ocagkamu. O6-
nacTb KOpbl C HyNEBOW HAMAarHM4eHHOCTbIO, KOTOpas BblAeneHa B LeHTpanbHOW YacTu reomar-
HWUTHbIX Npodunen, NPOUHTEPNPETUPOBaHa C reoAMHaAMUYEKNX NO3ULMIA Kak NoSc Bpekynpo-
BaHHbIX nopof, o6pa3oBaHHbIx BAoNb MNKP BcneacTBne akTUBHbIX NepeMeLLieHNiA Mo Hemy.

Knto4yeBble cnoBa: MarHUTHas CbeMka, HaMarHU4YeHHOCTb, OCTaTOYHas reoMarHMTHas aHo-
Manuna, mogenmposaHune, passfiomMbl, reoganHamMmuka.
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General consideration. The Peceneaga-Ca-
mena Fault (PCF) represents one of the most studi-
ed tectonic features in the Romanian territory, even
from the beginning of the 20" century [Mrazec, 1912;
Macovei, 1912]. It generally appears (Fig. 1) as the
boundary between the Moesian Platform (MP), re-
presented in the area by Central Dobrogea (CD),
and North Dobrogea (ND) geological units.

During the time, PCF has been alternately con-
sidered as a simple reverse fault [Macovei, 1912],
or the over thrusting plan of the hypothetic Green
Schists Nappe [Preda, 1964]. More recent research
pointed out its strike-slip nature [Sandulescu, 1980;
Gradinaru, 1984; Hippolyte etal., 1996; Besutiu, 1997;
Banks, Robinson, 1997].

Geophysics brought significant evidence on the
PCF in-depth extent. The international deep seis-
mic soundings (DSS) line Ne 2 [Radulescu et al.,

1976] has revealed its crustal nature, showing a
step of about 10 km at the both Conrad and Moho
discontinuities. Later on, seismic tomography ima-
ges based on CALIXTO experiment [Martin et al.,
2006], have revealed PCF as a major lithospheric
contact between East European Plate (EEP) and
Moesian Micro-plate (MoP) reactivated during the
W Black Sea opening [Besutiu, Zugravescu, 2004;
Besutiu, 2009].

Geological evidence shows a PCF geodynamic
evolution during the time with both right-lateral and
left-lateral slip episodes [Pavelescu, Nitu, 1977; San-
dulescu, 1980; Gradinaru, 1984; 1988; Seghedi, Oaie,
1995; Banks, Robinson, 1997; Cosma et al., 2010].

The Baspunar Geodynamic Observatory (BGD)
was especially designed and run by the Solid Earth
Dynamics Department at the Institute of Geody-
namics of the Romanian Academy in order to moni-

P-4

E=lm=| 1 [——|2 Hapls

il ) 5 |

|6 [~]7 % pls [ O ]o

Fig. 1. Simplified tectonic setting of PCF and location of the study area: 1 — North Dobrogea boundaries (a —
cropping out, b — covered); 2 — strike—slip faults; 3 — structural axes (a — syncline, b — anticline); 4 —
boundaries between North Dobrogea main units (a — cropping out; b — buried); 5 — Cirjelari-Camena
Outcrop Belt (a — cropping out, b — covered); 6 — episutural post-tectonic cover; 7 — river; 8 — settlements
(a — major cities; b — villages); 9 — Baspunar Geodynamic Observatory (BGD) location; PDD — Predobro-
gean Depression; ND — North Dobrogea; CD — Central Dobrogea; BB — Babadag Basin.
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Fig. 2. Simplified geologic sketch of the study area (modified after [Gradinaru, 1988]): 1 — Quaternary; 2 —
Babadag basin, Episutural sedimentary cover; 3—9 — CCOB (3 — Baspunar Melange; 4 — Formation Sfanta
(a), Amara Formation (b), 5 — Amara Breccia; 6 — Baspunar Spilite; 7 — Baspunar Formation; 8 — Camena
Rhyolite; 9 — Aiorman Formation); 10—13 — Magin unit (10 — Uspenia Formation, 11 — Cirjelari Rhyolite, 12 —
Camena Formation, 13 — Lower Paleozoic (marbles, quartzites and argillites)); 14—16 — Central Dobrogea
(14 — Infragrauwacke, 15 — Lower Grauwacke, 16 — Upper Grauwacke), 17 — settlement; 18 — quarry; 19 —

cross-section location; 20 — BGD; 21 — magnetic survey

tor slip along PCF. This paper mainly deals with
results of the high accuracy detailed magnetic in-
vestigations carried out on the PCF segment loca-
ted in the neighborhood of the BGD, aimed at re-
vealing the path and in-depth structure of the PCF
in the monitoring area. Research has been carried
out in the frame of the bi-lateral project INRAF (“In-
tegrated research of some active faults located in
the NW inland of the Black Sea on the Romanian
and Ukrainian territories”), jointly developed by the
Institute of Geodynamics of the Romanian Acade-
my and the Institute of Geophysics of the National
Academy of Sciences of Ukraine.

The local geological background. North
Dobrogea. The area subject to geophysical inves-
tigation mainly belongs to the so called Cirjelari-Ca-

T'eogpusuueckutl xypnaar Ne 1, T. 36, 2014

panel; 22 — PCF track (a — exposed, b — covered).

mena Outcrop Belt (CCOB). A thorough descripti-
on of the structure and lithostratigraphy of this unit
was provided by Gradinaru [Gradinaru 1980, 1984,
1988], and a simplified geological sketch for the stu-
dy area is shown in Fig. 2, along with the location
of the magnetically surveyed panels.

On the overall, the study area is dominated by the
presence of the Jurassic sedimentary and volcanic
rocks, unconformable overlying older Palaeozoic de-
posits of the Macin Unit and largely covered by the
post-tectonic sedimentary cover of the Cretaceous
Babadag Basin and shallow Quaternary formations.

The Quaternary rocks are mainly represented
by shallow layers of loess deposits.

The Babadag Basin comprises two main Upper
Cretaceous formations: lancina and Dolosman se-
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ries mainly consist of limestone and sandstone,
with transient facia (between sandy limestone and
limy sandstones). Overall, the Upper Cretaceous do-
es not contain any source of geomagnetic anoma-
lies, except for some residual red shale deposits,
locally developed within confined volumes, but able
to provide slight geomagnetic effects at the surfa-

ce [Besutiu, Nicolescu, 1999)).

Jurassic rocks of CCOB (Gradinaru, herein) may
be grouped into several main sedimentary formati-
ons (Fm):

— Cirjelari Fm (J, ,..) is composed of: 1) gaizes,
spongolites, tuffittes, 2) polimictic conglomera-
tes, 3) (marly and silty) shales, 4) bioclastic cal-
carenites and calcirudites, 5) oolitic calcareni-
tes. Also in the Cirjelari Fm mixtites with Green
Schist clasts, Cirjelari Rhyolite clasts, and oli-
gomictic conglomerates may occur;

— Baspunar Fm (J, ) consists of: 1) gaizes, spon-
golites, tuffittes, 2) crinoidal calcarenites, marl-
stones, marly shales, 3) rhyalitic tuffs at the bottom;

— Aiorman Fm (J,) is composed of terrigenous tur-
bidites;

—Movila Goala Fm (J,) consists of: 1) terrigeneous
turbidites, 2) black oolitic calcarenites, 3) crino-
idal calcarenites, bottomed by calcitized rhyo-
lite lava flows. Another two special tectono-stra-
tigraphic units should be also mentioned: the
Amara breccia (/,) and Baspunar Melange, with
metabasic rocks, probably shared remnants of
an incipiently developing oceanic crust in the fi-
nal stage of CCOB [Gradinaru, 1984];

—the Amara Breccia (J, ) has been interpreted
[Gradinaru, 1984] as a shared remnant of a for-
mer more extensive talus breccias. Itis a clast
supported monomictic breccias consisting of ele-
ments belonging to CD “Green Schist” series,
and several levels of carbonates rocks from the
Cirjelari Fm, with a carbonate matrix;

— the Baspunar Melange occurred later on (Late
Jurassic), when the movement along PCF beca-
me left-lateral. It contains blocks of Lower Pa-
laeozoic marbles and quartzites of the Macin unit,
but also blocks of Jurassic sedimentary and me-
tabasic rocks.

The Triassic deposits (Uspenia Fm) mainly con-
sist of gray limestone [Mirauta, Mirauta, 1961].

The Palaeozoic formations are practically hid-
den by younger deposits, except for some confi-
ned areas where they may crop out (Cirjelari valley,
where Aiorman Fm unconformable lies on Palaeo-
zoic basement rocks).

According to [Mirauta, Mirauta, 1961; Mirauta,
1966] the Palaeozoic deposits in the area mainly
consist of Devonian (philite, limestone, serricite-chlo-
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rite schist), and Carboniferous, represented by Carape-
lit Fm (conglomerates, sandstones and schist series).

The bimodal (acid and basic) CCOB volcanic
rocks may be grouped into Camena Rhyolite (Pz,)
and Baspunar spilite (J,).

The Camena Porphyries (7,?) crop out between
Cara Burun Hill (Camena) and Baspunar, and seem
to be connected to the tectonic lineament Baspu-
nar-Camena. They pierce the Proterozoic crystalli-
ne series, but occur as remnants in the Liassic cong-
lomerates. They have been described as micro-gra-
nites accompanied by dykes [Mirauta, Mirauta, 1961],
tuffs, ignimbrites and lava flows [Gradinaru, 1984].

The Baspunar spilite (J,) is mainly represented
by pillow-lava flows interbeded in Jurassic limestone.

Central Dobrogea (CD). South PCF, CD de-
posits are mainly represented by the Upper Prote-
rozoic Green Schist Series (GSS), largely descri-
bed during the time by various authors [Mrazec,
1910, 1912; Macovei, 1912; Mirauta, Mirauta, 1961;
Mirauta, 1964, 1965, 1969; Paraschiv, Paraschiv, 1978].

Mirauta describes several horizons of increas-
ing (top to bottom) grade metamorphic rocks [Mira-
uta, 1964]:

1) upper grauwacke (grauwacke, siliceous

schists, micro-conglomerates);

2) lower grauwacke (grauwacke, schists);

3) infragrauwacke (green philites, green chlori-

tic quartzites (meta-grauwacke).

The infragrauwacke series are bottomed by so-
me mezzo- to high-grade metamorphic rocks (mi-
caschiste, quartzites, amphibolytes) occurring in the
axis of the reverse mega-anticline structure Ceamu-
rlia-Baspunar (Mirauta, herein). They are conside-
red by various authors [Besutiu, 1997] as the source
of the regional geomagnetic high overlying the axis
of the Baspunar-Camena-Ceamurlia anticline.

Since early times, it has been also noticed [Mo-
tas, 1913] that CD deposits in the PCF contact zone
are sometimes intercalated with, or intruded by mag-
matic rocks of North Dobrogea (rhyolites), which might
represent another source for geomagnetic anomalies.

Data acquisition and processing. Field ob-
servations were conducted by using two G 856 AX
magnetometers (one for the record of diurnal geo-
magnetic activity, and the second one for observa-
tions along the survey lines).

Basically, the survey lines were designed al-
most perpendicular to the assumed PCF track. The
lines are 4 m apart, and a step of 2 m between two
consecutive stations along each line was used to
survey the study area. Location of data points was
set by using a Garmin 78 GPS receiver. The geo-
graphic coordinates on WGS 1984 ellipsoid were
then transferred into the rectangular coordinates

Teogpusuueckutl xypnaar Ne 1, T. 36, 2014
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Fig. 3. Residual geomagnetic anomaly along various PCF segments (a — micro-panel
P1, b — micro-panels P3—P5) as obtained after removing a first order polynomial trend.
Black dots mark data points. Brown solid lines show topography contours (in meters).
Dashed zone marks the assumed PCF track.
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Fig. 5. Tentative interpretative model of the geomagnetic anomaly across PCF: 1 — residual geomagnetic
anomaly, 2 — predicted field, 3 — body ID, 4 — magnetic susceptibility (in 10° CGSu); 5—13 — North Dobrogea
(5 — loess, 6 — post-tectonic cover (K2), 7 — Upper Jurassic limestone, 8 — Lower Jurassic, 9 — Triassic
limestone, 10 — Camena Fm (P2—T1), 11 — Baspunar spilite, 72 — Camena Porphyry, 13 — Cirjelari Rhyolite);
14—18 — Central Dobrogea (14 — diorite dykes, 15 — low-grade GSS, 16 — higher-grade GSS, 17 — secondary
fault, 78 — breccias zone generated by fault dynamics).
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of the Romanian national stereographic projection
system [Avramiuc et al., 2001].

The geomagnetic sensor was placed at 3 m abo-
ve the ground in order to avoid (or at least to miti-
gate) shallow local effects.

Diurnal geomagnetic activity was observed and
recorded every minute during the survey in a local
base-station, located close to the surveyed area.

Routine processing has been applied to the raw
observations in order to provide data consistency:
removal of the effect of external sources and base
reduction.

As aresult, atime-invariant AT as referred to the
survey base-station was obtained. Finally, a residu-
al geomagnetic anomaly was computed by remo-
ving a first-order polynomial trend from the obser-
vations, and AT, geomagnetic maps were plotted
(Fig. 3).

Modeling geomagnetic sources. Taking
into consideration the pattern of the geomagnetic
anomaly and some previous information on the stu-
dy area, attempts for modeling the geomagnetic so-
urces and their geological interpretation have been
performed.

The software. The professional GM-SY S® soft-
ware run on the Geosoft OASIS® platform has been
used for 2D modeling along the survey lines. Itis
based on the methods proposed by [Talwani et al.,
1959; Talwani, Heirtzler, 1964], and employs algo-
rithms published by [Won, Bevis, 1987].

Rocks magnetic properties. Magnetic pro-
perties of the rocks in the area have been conside-

Geomagnetic Field Models

red according to previous rock physics determina-
tions [Besutiu, 1997; Besutiu, Nicolescu, 1999], to
which additional determinations on outcrops samp-
les were performed in the IG-NASU laboratory.

Table 1 shows some magnetic properties of the
main geological formations within North Dobrogea
and the study area.

Polarizing field. As Kéenigsberger coefficient
(Q) of the geological formations known in the study
area generally shows small values, the induced mag-
netization model has been considered during the
computation, with the following parameters for the
polarising field:

— total intensity field 7=48 500 nT,

— geomagnetic inclination /=62° N,

— geomagnetic declination D=3°E.

Physical model. Two main aspects of the mo-
deling should be stressed:

— to get a better fit between the observed
and predicted anomaly, laterally extended geo-
magnetic source models (exceeding the survey
line) were taken into consideration;

—due to the close vicinity of the survey lines,
similar geomagnetic patterns, and, consequent-
ly, except for small lateral changes in geomet-
ry, rather similar models of the sources of the
geomagnetic anomalies as showed in the follo-
wings were outlined along various lines.
Basically, following the trial & error process of

2D modeling along the survey lines the best fit has
been obtained for the geometry and rock magnetic
properties as illustrated in Fig. 4.
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Fig. 4. Physical model for the source of the residual geomagnetic anomaly along the line P:
1 — observed field, 2 — predicted effect, 3 — magnetic body ID (see Table 2).
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Table 1.

of North Dobrogea and CCOB

Magnetic properties of the main geological formations

Magnetic Average
(107° CGSu) Q
North Dobrogea
Tulcea Unit
Triassic basalts 278—450 0,41
Dolerite (Marca) 189—252
Quartzite diorite (Cazalgic Bair) 682—1276 0,16
GCranite-diorite (Cazalgic Bair) 88—162 0,15
Niculitel sub-unit
Mafic rocks (basalte, spilite) 539—1322 1,85
Rhyolite (Isaccea) 50—102 0,33
Consul sub-unit
Rhyolite (P. Rosie, Consul) 198—409 1,01
weathered (Iulia) 214—236
highly weathered (Consul) 13—36 1,25
Magin Unit
Dolerite (Galma) 270—496 0,64
Dolerite (Macin—Hamcearca) 765—1734 1,16
Dolerite (Greci) 67—71 0,17
Biotitic granite (Vacareni) 248—465 7,11
Biotitic granite (Pricopanu) 9—15 0,25
Leuco-granite (Macin-Coslugea) 169—328 0,25
Alkali-granite 797—1120 0,29
Granodiorite (Greci) 467—790 0,12
Diorite (Greci/Vacareni) 724—1428 16,68
Contacts: Carapelit Fm/granite F74—2056 0,22
Boclugea series/granite 1040—2740 559
Megina crystalline series:
vulcanogen-felsic 78—158 547
amphibolites 786—2464 2,82
Orliga crystalline series 144—629 2,05
CCOB
Quaternary-loess 0—15 0,5
Episutural sedimentary cover
(limestone) 1—5 0,3
Cirjelari Fm 1—10 0,2
Baspunar Fm 1—13 0,3
Aiorman Fm 0—11 0,1
Camena rhyolite 30—120 0,7
Baspunar spilite 100—300 1,5
Cirjelari rhyolite 50—150 0.8
Diorite (dykes) 400—1200 1,8
Central Dobrogea
Upper (low-grade) grauwacke 80—230 0,5
Infra (high-grade) grauwacke 280—630 1,5
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Table 2. Magnetic properties of the source model
Body Magn.e t.i N . . Lo
ID susceptibility Potential geological significance
(CGSu)
C27 0,000150 Baspunar spilite
C26 0,000150 Baspunar spilite
C25 0,000150 Baspunar spilite
C24 0,000100 Baspunar spilite
C23 0,000150 Baspunar spilite
C22 0,000150 Baspunar spilite
C21 0,000150 Baspunar spilite
C20 0,000100 Camena rhyolite?/Baspunar spilite?
C19 0,000100 Camena rhyolite?/Baspunar spilite?
c18 0,000001 Sandy limestone (Cretaceous post-tectonic
cover)
C17 0,000005 Camena Fm
C16 0,000030 Cirjelari rhyolite
C15 0,000020 Triassic limestones (Uspenia Fm)
Cl14 0,000000 Milonites/breccia (Baspunar melange)
C13 0,000800 Diorite (partly weathered)
C12 0,000800 Diorite (partly weathered)
C11 0,001100 Diorite (fresh)
C10 0,000500 Weathered diorites?/infragrauwacke?
Cc9 0,000470 Weathered diorites?/infragrauwacke?
C8 0,000580 Weathered diorites?/infragrauwacke?
C7? 0,000050 Highly weathered zone (fault?/fissure?)
C6 0,000460 Weathered diorites?/infragrauwacke?
C5 0,000500 Infragrauwackee
C4 0,000450 Infragrauwackee
C3 0,000500 Infragrauwackee
C2 0,000240 Lower grauwacke
C1 0,000200 Lower grauwacke

Overall, to predict the geomagnetic anomaly,
several 2D magnetic bodies have been considered.
Table 2 shows their magnetic susceptibilities along
with the assumed geological significance.

Geological interpretation. Based on previ-
ously gathered tectonic knowledge and rock phy-
sics of the main geological formations occurring in
the study area and neighbouring region, an attempt
for interpreting the geomagnetic sources outlined by
modeling has been made. The results are syntheti-
cally illustrated in Fig. 5. As previously mentioned,
the interpretative geological cross-section lateral-
ly extends over the magnetic line in order to miti-
gate the effect of the signal truncation and side
effects.

T'eogpusuueckutl xypnaar Ne 1, T. 36, 2014

Overall, the geological interpretation of the syn-
thetic model has allowed outlining the PCF path
by separating PCF flanks due to the general dis-
tinct geomagnetic behaviour of their different em-
bedded geological formations (basically magnetic
CD Proterozoic GSS versus non-magnetic ND Pa-
laeozoic sedimentary).

But, the survey accuracy has also allowed dis-
criminating some distinct layers with different mag-
netization within GSS, as well as the presence of
some intrusive rocks (diorite dykes?) penetrating
the geological formations.

On the other hand, basalt flows (Baspunar spi-
lite) embedded within the Baspunar Fm (Jurassic
and/or Triassic limestone) significantly complicate
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the interpretation by locally increasing the geomag-
netic behaviour of the respective sedimentary pile.

Revealing the PCF track. Taking into consi-
deration the peculiarities of the geomagnetic field
pattern over the two flanks of the PCF, and the re-
sults of the quantitative interpretation of the 2D mo-
deling along the survey lines, PCF track could be
clearly outlined in the areas covered by recent depo-
sits except for some confined areas due to the insuf-
ficient westward extension of the survey lines Fig. 6.

Geodynamic considerations. One interest-
ing aspect pointed out by the geomagnetic mode-
ling has been the apparent lack of magnetic proper-
ties in the central compartment of the interpreta-

tive cross-section, located along the assumed PCF
track.

This has been interpreted in terms of fragmen-
tation of the PCF flanks, generating rock-debris thro-
ugh the abrasion of the fault flanks as a consequ-
ence of its active slip. Despite some initial indivi-
dual magnetic properties, on the overall, elements
of this compartment may not be reflected in the pat-
tern of the geomagnetic anomaly due to the cur-
rent of randomly distributed direction of magneti-
zation of the breccias elements. Besides, water cir-
culating within the contact zone accelerated the
magnetic minerals weathering and, consequently,
the loss/mitigation of original magnetic properties.
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Fig. 6. PCF imprint in the pattern of the residual geomagnetic anomaly along various survey lines.
Fault track is marked by the blue dashed zone.
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PECENEAGA-CAMENA FAULT: GEOMAGNETIC INSIGHTS INTO ACTIVE TECTONIC CONTACT

Concluding remarks. Detailed high accura-
cy ground magnetic survey on a PCF segment lo-
cated in the vicinity of BGD succeeded to outline
the fault track and in-depth structure, based on the
interpretation of some 2D models simulating sourc-
es of geomagnetic effects.

The active character of the fault has been indi-
rectly revealed through the loose of magnetic be-
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