Kinematic migration of the field of refracted waves while the image of environment is being formed according to DSS data

A. Verpahovskaya


While producing the image of environment we need to have some a-priori information of its velocity model. Finite-difference kinematic migration of the field of refracted waves makes possible to describe the deep location of refracting boundary as well as the values of velocity in overlying series that is enough for subsequent formation of environment image applying dynamic migration. An algorithm has been proposed and software support of finite-difference kinematic migration of the field of refracted waves in case of formation of the image of environment according to DSS data taking into account their special features, which effectiveness is demonstrated by model and practical materials.


DSS; kinematic migration; refracted waves


Averbuch A. G., 1975. Interpretation of seismic refraction of waves. Moscow: Nedra, 223 p. (in Russian).

Bondarev V. I., Krylatkov S. M., 2002. Analysis of seismic data: Textbook for students. Ekaterinburg: USMA Publ., 212 p. (in Russian).

Verpahovskaya A. O., 2011. Actual problems of finite-difference migration field refraction. Geofizicheskiy zhurnal 33(6), 96—108 (in Russian).

Verpahovskaya A. O., 2012. Image formation of complex structural details of the structure refractor. Geofizicheskiy zhurnal 34(5), 150—160 (in Russian).

Verpahovskaya A. O., Shymanskiy V. Yu., 2005. Study of the low processing speed of point soundings using a numerical method for time fields. Geofizicheskiy zhurnal 27(5), 895—901 (in Russian).

Grad M., Guterh A., Keller R., Omelchenko V. D., Starostenko V. I., Stephenson R. A., Stovba S. N., Tibo G., Tolkunov A. P., 2006. Jobs by deep seismic sounding the profile DOBRE. In: Structure and dynamics of the lithosphere of Eastern Europe. Moscow: GEOKART GEOS, P. 321—327 (in Russian).

Egorova T. P., Starostenko V. I., 2006. Geological and geophysical exploration of the Dnieper-Donets aulacogen. In: Structure and dynamics of the lithosphere East Europe. Moscow: GEOKART GEOS, P. 296—306 (in Russian).

Pavlenkova N. I., 1999. Method of deep seismic sounding, the main stages of development, progress and challenges. Fizika Zemli (7-8), 3—29 (in Russian).

Pilipenko V. N., 1979. Numerical method for time fields for seismic boundaries. In: Inverse kinematics problem of explosion seismology. Moscow: Nauka, P. 124—181 (in Russian).

Pilipenko V. N., Verpahovskaya A. O., 2008. Study characteristics of migration transformations of the field refraction using 2D and 3D finite-difference modeling of seismograms. Geofizicheskiy zhurnal 30(1), 84—96 (in Russian).

Pilipenko V. N., Verpahovskaya A. O., 2003. Features of the migration field transformation refracted waves. Geofizicheskiy zhurnal 25(1), 42—55 (in Russian).

Pilipenko V. M., Verpahovskaya O. O., 2003. Image formation seismic environment using field refracted waves. Zbirnik naukovih prats UkrDGRI (3), 64—70 (in Ukrainian).

Pilipenko V. N., Sokolovskaya T. P., 1990. Imaging refractors finite-difference method. Geofizicheskiy zhurnal 12(5), 48—54 (in Russian).

Pilipenko V. N., Verpahovskaya A. O., Starostenko V. I., Pavlenkova N. I., 2010. Finite-difference migration field refracted waves in the study of the deep structure of the crust and upper mantle according to the NHS (for example, the profile DOBRE). Fizika Zemli (11), 36—48 (in Russian).

Samarskiy A. A., 1983. Theory of difference schemes. Moscow: Nauka, 616 p. (in Russian).

Telegin A. N., 2004. Refraction seismic survey. St. Petersburg: SPbSU Publ., 187 p. (in Russian).

Welch B., Jones K., Hobbs D., 2004. Practical Programming in Tcl and Tk. 4th ed. Moscow: Publ. house «Williams», 1136 p. (in Russian).

DOBREfraction'99 Working Group, Grad M., Gryn D., Guterch A., Janik T., Keller R., Lang R., Lyngsie S. B., Omelchenko V. D., Starostenko V. I., Stephenson R. A., Stovba S. M., Thybo H., Tolkunov A., 2003. «DOBREfraction'99», velocity model of the crust and upper mantle beneath the Donbas Foldbelt (East Ukraine). Tectonophysics 371, 81—110.

Franco R. D., 2005. Multi-refractor imaging with stacked refraction convolution section. Geophys. Prospect. 53, 335—348.

Geoltrain S., Brac J., 1993. Can we image complex structures with first-arrival traveltime? Geophysics 58, 564—575.

Hill R., 1987. Downward continuation of refracted arrivals to determine shallow structures. Geophysics 52(9), 1188—1198.

Iversen E., Tygel M., Ursin B., de Hoop M. V., 2012. Kinematic time migration and demigration of reflections in pre-stack seismic data. Geophys. J. Int. 189(3), 1635—1666.

Pylypenko V., Goncharov A., 2000. Seismic migration in near vertical and wide-angle reflection and refraction studies: Towards a unified approach. Explor. Geophys. 31, 461—468.

Pilipenko V. N., Makris J., 1997. Application of migration to the interpretation of WARP data, Expended Abstracts, 67th Ann. Mtg. Soc. Explor. Geophys., Dallas. Р. 56.

Makris J., Rihm R., Egloff F., 1999. WARRP (Wide Aperture Reflection and Refraction Profiling): The principle of successful data acquisition where conventional seismic fails. 69th Ann. Intemat. Mtg. Soc. Expl. Geophys. Expanded Abstracts. P. 989—992.

Mufti I. R., Pita J. A., Huntley R. W., 1996. Finite-difference depth migration of exploration-scale 3-D seismic data. Geophysics 61, 776—794.

Orlowsky D., Ruter H., Dresen L., 1998. Combination if common-midpoint-refrаction seismic with the generalized reciprocal method. J. Appl. Geophys. 39(4), 221—235.

Podvin P., Lecomte I., 1991. Finite difference computation of traveltime in very contrasted velocity model: A massively parallel approach and its associated tools. Geophys. J. Int. 105, 271—284.

Pylypenko V. M., Verpakhovska O. O., Starostenko V. I., Pavlenkova N. I., 2011. Wave images of the crustal structure from refraction and wide-angle reflection migrations along the DOBRE profile (Dnieper-Donets paleorift). Tectonophysics 508, 96—105.

Reshef M., 1991. Depth migration from irregular surfaces with depth extrapolation methods. Geophysics 56, 119—122.

Sava P., Fomel S., 2001. 3-D traveltime computation using Huygens wavefront tracing. Geophysics 56, 119—122.

Seisa H. H., 2010. Migration and interpretation of first arrival infection points due to lateral variations. Near Surf. Geophys. (8), 55—63.

Shtivelman V., 1996. Kinematic inversion of first arrivals of refracted waves; a combined approach. Geophysics 61(2), 509—519.

Thierry P., Lambare G., Podvin P., 1999. 3-D preserved amplitude prestack depth migration on a workstation. Geophysics 64(1), 222—229.

Vidale J., 1988. Finite-difference calculation of travel times. Bull. Seismol. Soc. Am. 78, 2062—2076.

Zhang J., 2006. Refraction migration: imaging multiple refractors automatically. Expanded Abstract, SEG 71st Annual Meeting, New Orleans, Louisiana. P. 2426—2429.

Zhou H., Li L., Bjorklund T., Thornton M., 2010. A comparative analysis of deformable layer tomography and cell tomography along the LARSE lines in southern California. Geophys. J. Int. 180(is. 3), 1200—1222.

Wang B., Pann K., 1995. Comparison of velocity sensitivity of kinematic migration in common-shot and common-offset domains. SEG Technical Program Expanded Abstracts, 1193—1196.

Creative Commons License
Licensed under a Creative Commons Attribution 4.0 International License.

Flag Counter