The nature of bifocal source of the earthquake and precursors of the blow


  • V. Nikolaevskiy Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Russian Federation
  • L. Sobisevich Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Russian Federation



earthquake, bifocal source, dilatancy, compaction, fluids, destruction, magnetic disturbances-precursors


On the base of ousting principle and application of the data on location bifocal model of earthquake source is proposed, which includes zones of dilatancy and compaction. The first one corresponds to the recognized set of precursors and the second one compensates the changes of the fissures volume. The sources of radon delineate dilatancy zone (the beginning of fissures growth). Hypocenter of the main blow is in the transitional zone. Existence of two foci in the source of earthquake is confirmed experimentally on the base of gravity data and observations of the ocean surface level. Anomalous magnetic disturbances in variations of magnetic field of the Earth are being analyzed, which can be considered as a short-term precursor. This type of disturbances is inseparably connected with tectonomagnetic effects in lithosphere and other geo-spheres. The data of experimental observations of magnetic disturbances-precursors have been presented, which allow to draw a conclusion that they are induced by internal sources located in the lower geo-spheres of the Earth.


Alekseev A. S., Glinskiy B. M., Imomnazarov Kh. Kh., Kovalevskiy V. V., Sobisevich A. L., Sobisevich L. E., Khairetdinov S. M., Tsibulchik G. M., 2008. Monitoring geometry and physical properties of the «surface» and «focal» dilatancy zones by vibroseismic seismic areas of the earth's crust. In: The changes of environment and climate. Natural disasters. Vol. 1. Moscow: IPE RAS Publ., P. 179—222 (in Russian).

Gabsatarov Yu. V., 2012. Analysis of deformation processes in the lithosphere of geodetic observations on the example of the San Andreas Fault. Geodynamics & tectonophysics 3(3), 275—287 (in Russian).

Dobrovolskiy I. P., 2009. Mathematical theory of training and forecasting tectonic earthquake. Moscow: Fizmatlit, 240 p. (in Russian).

Zharkov V. N., 2012. Physics of the Earth's interior. Moscow: Nauka i obrazovanie, 384 c. (in Russian).

Karakin A. V., Lobkovskiy L. I., Nikolaevskiy V. N., 1982. Education serpentinite layer of oceanic crust and some geological and geophysical phenomena. Doklady AN SSSR 265(3), 527—576 (in Russian).

Kopnichev Yu. F., Sokolova I. I., 2010. Correlation characteristics of seismic wave absorption and fields in areas of ring structures formed before strong earthquakes. Vulkanologiya i seysmologiya (6), 1—18 (in Russian).

Lander A. V., Bookchin B. G., Titkov N. N., 2013. Tectonic position of deep earthquake in the Sea of Okhotsk 24 May 2013, Mw = 8.3. Fourth scientific and technical conference «Problems of complex geophysical monitoring of the Russian Far East». Petropavlovsk-Kamchatsky. September 30—October 4, 2013 (in Russian).

Maron V. I., 2012. Mechanisms of instability volcanic eruption and working well. Cause of the accident in 2009 at the Sayano-Shushenskaya hydropower plant. Geofizicheskie issledovaniya 13(4), 51—59 (in Russian).

Milanovskiy S. Yu., Nikolaevskiy V. N., 2009. The role of the fracture in the evolution of the earth's crust. In the book .: Tectonophysics and topical issues of the Earth Sciences.Vol. 2. Moscow: IPE RAS Publ., 71—103 (in Russian).

Nikolaevskiy V. N., 2014. Geomechanics. Modern head. Moscow: IPE RAS Publ., 484 p. (in Russian).

Nikolaevskiy V. N., 1996. Geomechanics and fluid dynamics. Moscow: Nedra, 448 p. (in Russian).

Nikolaevskiy V. N., 1979. Moho depth of the marginal-fragile state of the dilatancy of rocks. Doklady AN SSSR 249(4), 817—821 (in Russian).

Nikolaevskiy V. N., 1983. Mechanics geomaterials and earthquakes. Itogi nauki i tehniki. Ser. Mehanika tverdogo deformiruemogo tela 15, 149—230 (in Russian).

Nikolaevskiy V. N., 1967. On the relationship between volume and shear deformations and shock waves in the soft soil. Doklady AN SSSR 117(3), 542—545 (in Russian).

Nikolaevskiy V. N., 2011. The earthquake — the harbingers of events and stroke. In: Extreme natural events and disasters. Vol. 2. Moscow: Publ. RAS, P. 316—330 (in Russian).

Rice J., 1982. The mechanics of the earthquake source. Moscow: Mir, 217 p. (in Russian).

Rodionov V. N., Adushkin V. V., Kostyuchenko V. N., Nikolaevskiy V. N., Romashov A. S., Tsvetkov V. M., 1971. Mechanical effect of the underground explosion. Moscow: Nedra, 221 p. (in Russian).

Semenov A. N., 1969. Changing attitudes travel times of transverse and longitudinal waves before the strong earthquake. Izvestiya AN SSSR. Fizika Zemli (4), 72—77 (in Russian).

Sobisevich A. L., 2011. Selected problems of mathematical geophysics, volcanology and and geoecology. Moscow: IPE RAS Publ., 510 p. (in Russian).

Sobisevich A. L., 2013. Selected problems of mathematical geophysics, volcanology and and geoecology. Vol. 2. North Caucasian Geophysical Observatory. Create, analyze the results of observations. Moscow: IPE RAS Publ., 512 p. (in Russian).

Sobisevich L. E., Sobisevich A. L., Kanonidi K. Kh., 2012. Abnormal geomagnetic disturbances induced catastrophic tsunamigenic earthquakes in the area of Indonesia. Geofizicheskiy zhurnal 34(3), 22—37 (in Russian).

Sobisevich L. E., Sobisevich A. L., Kanonidi K. Kh., 2014. On the mechanism of formation of pockets of deep-focus earthquakes. Doklady RAN 459(1), 1391—1396 (in Russian).

Sobolev G. A., Ponomarev A. V., 2003. Physics of earthquakes and precursors. Moscow: Nauka, 270 p. (in Russian).

Stefanov Yu. P., 2010. Numerical study of the formation of discontinuities in geomaterials. Modes of deformation. In: Trigger effects in the ecosystems. Moscow: Geos, P. 238—246 (in Russian).

Traskin V. Yu., Skvortsova Z. N., 2006. Rehbinder effect in the geodynamic processes. In Sat .: fluids and geodynamics. Moscow: Nauka, P. 147—164 (in Russian).

Anderson D. L., Whitcomb J. H., 1975. Time-dependent seismology. J. Geophys. Res. 80, 1497—1503.

Arnadottir T., Segall P., 1994. Loma Prieta earthquake imaged from inversion of geodetic data. J. Geophys. Res. 99, 2183—21855.

Cosserat E., Cosserat F., 1909. Theorie des corps deformables. Paris: A. Hermann et fils, 226 p.

Crampin S., Gao Y., 2010. A review of the new understanding of fluid-rock deformation in the crack-critical Earth. In: Rock stress and Earthquakes. London: Taylor & Frencis, 235—240.

Dal Moro G., Zadro M., 1999. Remarkable tilt-strain anomalies preceding two seismic events in Friuli (NEItaly): their interpretation as precursors. Earth Planet. Sci., Lett. 170, 119—129.

Dudkin F., Korepanov V., Yang D., Leontyeva O., 2011. Analysis of the local lithospheric magnetic activity before and after Panzhihua M = 6.0 earthquake (30 august 2008, China). Nat. Hazards Earth Syst. Sci. 11, 3171—3180.

Egbert G. D., 2002. On the Generation of ULF Magnetic variations by Conductivity Fluctuations in a Fault Zone. Pure Appl. Geophys. 159, 1205—1227.

Gusev A. A., 1988. Two dilatancy-based models to explain coda-wave precursors and P/S spectral ratio. Tectonophysics 152, 227—237.

Fenoglio M. K., Johnston M. J. S., Byerlee J. D., 1995. Magnetic and Electric Fields Associated with Changes in Pore Pressure in Fault Zones: Application to the Loma Prieta ULF Emissions. J. Geophys. Res. 100, 12,951—12,958.

Fraser-Smith A. C., Bernardi A. McGill P. R., Ladd M. E. Helliwell R. A., Villard Jr O. G., 1990. Low-frequency magnetic field measurements near the epicenter of the MS 7.1 Loma Prieta earthquake. Geophys. Res. Lett. 17(9), 1465—1468.

Hauksson E., 1981. Radon content of groundwater as an earthquake precursor. Evaluation of worldwide data and physical basis. J. Geophys. Res. 86, 9397—9410.

Holcomb D., Rudnicki J. W., Issen K. A., Sternlof K., 2007. Compaction localization in the Earth and the laboratory: state of the rersearch and research directions. Acta Geotechnica 2, 1—15.

Ichihara H., Hamano Y., Baba K., Kasaya T., 2013.Tsunami source estimation of the 2011 Tohoku earthquake detected by an ocean-bottom magnetic. Earth. Planet. Sci. Lett. 382, 117—124.

Kanamori H., Fuis G., 1976. Variation of P-wave velocity before and after the Galway Lake earthquake (M=5.2) and the Goat Mountain earthquakes (M = 4.7) 1975 in the Mojave desert, California. Bull. Seismol. Soc. Amer. 66(6), 2017—2037.

Koch M., 1992. Bootstrap inversion for vertical and lateral variations of the S wave structure and Vp/VS ratio from shallow earthquakes in the Rhinegraben seismic zone, Germany. Tectonophysics 210, 91—115.

Lander A. V., Shapiro M. N., 2013. The Origin of the Modern Kamchatka Subduction Zone. In: Volcanism and Subduction: The Kamchatka Region. American Geophysical Union, Washington, D.C.

Manga M., Wang C.-Y., 2007. Earthquake hydrology. In: Treatise on geophysics. Ch. 4.10. Amsterdam: Elsevier, P. 293—320.

Marone Ch., 1991. A note on the stress-dilatancy relation for stimulated fault gouge. Pure Appl. Geophys. 137(4), 410—419.

Merzer M., Klemperer S. L., 1997. Modeling Low-frequency Magnetic-field Precursors to the Loma Prieta Earthquake with a Precursory Increase in Fault-zone Conductivity. Pure Appl. Geophys. 150, 217—248.

Nur A., 1974. Matsushiro, Japan, earthquake swarm: Confirmation of the dilatancy-fluid diffusion model. Geology 2, 217—221.

Ohtake M., 1974. Seismic activity induced by water injection at Matsushiro, Japan. J. Phys. Earth 22, 163—176.

Panet I., Mikhailov V., Diament M. Pollitz F., King G., De Viron O., Holschneider M., Biancale R., Lemoine J.-M., 2007. Co-seismic and post-seismic signatures of the Sumatra December 2004 and March 2005 earthquakes in GRACE satellite gravity. Geophys. J. Int. 171, 177—190.

Pavlenkova N. I., 2004. Low velocity and low electrical resistivity layers in the middle crust. Annals of geophysics 47(1), 157—169.

Rice J.R., 1979. Theory of precursory processes in the inception of earth¬quake rupture. Gerlands Beitr. Geophys. 88(2), 91—127.

Rudnicki J. W., 1988. Physical models of earthquake instability and precursors processes. Pure & Appl. Geophys. 126(2), 534—554.

Rundle J. B., Rundle P. B., Donnellan A., Li P., Klein W., Morein G., Tarcotte D. L., Grant L., 2006. Stress transfer in earthquake, hazard estimation and ensamble forcasting: interference from numarical simulations. Tectonophysics 413, 109—125.

Sebela S., Vaupotic J., Kostak B., Stemberk J., 2010. Direct measurement of present-day tectonic movement and associated radon flux in Postojna cave, Slovenia. J. Cave Karst Stud. 72(1), 21—34.

Schock R.N., 1982. Strain behavior of a granite and a graywacke sandstone in tension. J. Geophys. Res. 87(В9), 7817—7823.

Swolfs H. S., 1976. Stress-monitoring system for earthquake prediction. Salt Lake City: Terra-Tek, Report TR, 76—55.



How to Cite

Nikolaevskiy, V., & Sobisevich, L. (2015). The nature of bifocal source of the earthquake and precursors of the blow. Geofizicheskiy Zhurnal, 37(4), 51–74.