Heterogeneous structure of the lithosphere in the Black Sea from a multidisciplinary analysis of geophysical fields

Authors

  • V. I. Starostenko S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • O.M. Rusakov S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • I.K. Pashkevich S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • R.I. Kutas S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • I.B. Makarenko S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • O.V. Legostaeva S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • T. Lebed S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • A. Savchenko S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v37i2.2015.111298

Keywords:

The Black Sea basins, magnetics, gravity, heat flow, fault tectonics, seismic tomography, lithosphere heterogeneity

Abstract

Magnetic, gravity, geothermal, seismic and tomographic data from the lithosphere were first jointly examined. A multidisciplinary interpretation has resulted in a new and consistent model for lithospheric density, magnetic, thermal and velocity heterogeneities. Faults of different orders for the crystalline crust have been mapped in details. Large deep fault zones were recognized. Among them is the most prominent Odessa-Sinop-Ordu (OSO) fault zone, which played a key role in the opening and development of the Black Sea Depression. A fundamental difference was revealed between the crustal and mantle structure and geophysical parameters of the Western Black Sea Basin (WBSB) and Eastern Black Sea Basin (EBSB). These dissimilarities are in the size of «non-granitic» crust, pattern and intensity of heat flow, topography of the lower boundary of the thermal lithosphere, mantle seismic velocity and structure of magnetic and residual gravity anomalies. Based on new information it was demonstrated that the WBSB and EBSB were diachronously formed on two large distinct continental blocks with independent post-rift development of the sub-basins. The rifting of the western sub-basin commenced earlier than that of the eastern one. The EBSB is characterized by younger thermal activity than the WBSB and consequently it was stabilized later. The Mid Black Sea High (MBSH) is not a single tectonic unit but is formed by two ridges of various crystalline crustal structure and age shifted relative to each other by the faults of the OSO zone.

References

Afanasenkov A. P., Nikishin A. M., Obukhov A. V., 2007. The Eastern Black Sea Basin: geological structure and hydrocarbon potential. Moscow: Nauchny Mir, 172 p. (in Russian).

Akbayram K., Okay A., Stir M., Topuz G., 2009. New U-Pb and Rb-Sr ages from northwest Turkey; Early Cretaceous continental collision in the western Pontides. Geophysical Research Abstracts, 11, EGU2009-7395-2.

Aryamanesh A., 2009. Aeromagnetic Data Interpretation to Locate Buried Faults in Yazd Province — Iran. World Appl. Sci. J. 10, 1429—1432.

Balavadze B. K., Belokurov V. S., Garkalenko I. K., Malovitsky Yu. P., Mindeli P. Sh., Moskalenko V. N., Neprochnov Yu. P., Neprochnova A. F., Starshinova E. A., Chekunov A. V., 1975. Physical properties of rocks Black Sea basin. In: The Earth’s crust and the Black Sea basin evolution. Eds Yu. D. Bulanzhe, M. V. Muratov, S. I. Subbotin, B. K. Balavadze. Moscow: Nauka, 254—269 (in Russian).

Belousov V. V., Volvovsky B. S., Arkhipov I. V., Buryanov V. B., Evsyukov Y. D., Goncharov V. P., Gordienko V. V., Ismagilov D. F., Kislov G. K., Kogan, L. I., Kondyurin A. V., Kozlov V. N., Lebedev L. I., Lokholatnikov V. M., Malovitsky Y. P., Moskalenko V. N., Neprochnov Y. P., Ostisty B. K., Rusakov O. M., Shimkus K. M., Shlezinger A. E., Sochelnikov V. V., Sollogub V. B., Solovyev V. D., Starostenko V. I., Starovoitov A. F Terekhov A. A., Volvovsky I. S., Shigunov A. S., Zolotarev V. G., 1988. Structure and evolution of the Earth’s crust and upper mantle of the Black Sea. Boll. Geofis. Teor. Appl., 30 (117—118), 109—196.

Besutiu L., Zugravescu D., 2004. Geophysical considerations on the Black Sea opening and its seismo- tectonic consequences. Rev. Roum. Géophysique 48, 3—13.

Bezverkhov B. D., 1988. Tectonics of the Mesozoic sedimentary cover in the NW as a basis for planning oil and gas exploration. Ph.D. Thesis. Odessa University, Ukraine (in Russian).

Bozkurt E., Winchester J. A., Piper J. D. A. eds., 2000. Tectonics and Magmatism in Turkey and Surrounding Area. Geol. Soc. London Spec. Publ., 173. 540 p.

Brocher T. M., 2005. Compressional and Shear Wave Velocity versus Depth in the San Francisco Bay Area, California: Rules for USGS Bay Area Velocity Model 05.0.0. Open-File Report 05-1317. Menlo Park, Calif., US Geological Survey. 58 p.

Bugaenko I. V., Shumlyanskaia L. A., Zaets L. N., Tsvetkova T. A., 2008. Three dimensional P-velocity model for the mantle of the Black Sea and adjacent territory. Geophys. J. 30(5), 145—160 (in Russian).

Bulanzhe Yu. D., Muratov M. V., Subbotin S. I., Balavadze B. K. eds., 1975. The Earth’s crust and history of evolution of the Black Sea Depression. Moscow: Nauka, 258 p. (in Russian).

Buryanov V. B., Kozlenko V. G., Rusakov O. M., 1981. An universal reducing model for interpretation of gravity anomalies in a fitting method. Reports of Academy of Sciences of Ukrainian Soviet Socialist Republic, Series. B. 5, 3—6 (in Russian).

Carslaw H. S., Jaeger J. C., 1959. Conduction of heat in solids. 2nd ed. Oxford: Clarendon Press, 510 p.

Čermak V., Bodri L., Rybach L., Buntebarth G., 1990. Relationship between seismic velocity and heat production: comparison of two sets of data and test of validity. Earth Planet. Sci. Lett. 99, 48—57.

Chekunov A. V., 1987. Problems of the Black Sea depression. Geophys. J. 9(4), 3—25 (in Russian).

Chekunov A. V. ed., 1994. The lithosphere of the Central and Eastern Europe: Young platforms and the Alpine folded belt. Kiev: Naukova Dumka, 331 p. (in Russian).

Chekunov A. V, Gavrish V. K., Kutas R. I., Ryabchun L. I., 1992. Dniepr-Donetsk paleorift. In: The lithosphere of the Central and Eastern Europe: Young platforms and the Alpine folded belt. Chekunov A. V. ed., Kiev: Naukova Dumka, 331 p. (in Russian).

Çinku M. С, Mümtaz H., Orbay N., Ustaömer T., Hirt A., Kravchenko S., Rusakov O., Sain N., 2013. Evidence of Early Cretaceous remagnetization in the Crimean Peninsula: a palaeomagnetic study from Mesozoic rocks in the Crimean and Western Pontides, conjugate margins of the Western Black Sea. Geophys. J. Int. 195, 821—843.

Christensen N. I., Mooney W. D., 1995. Seismic velocity structure and the composition of the continental crust: A global view. J. Geophys. Res. 100, 9761—9788.

Cloetingh S., Spadini G., van Wees J. D., Beekman F., 2003. Thermo-mechanical modelling of Black Sea Basin (de)formation. Sediment. Geol. 156, 169—184.

Coles R. L., Haines G. V., Jansen van Beek G., Nandi A., Walker J. K., 1982. Magnetic anomaly maps from 40°N to 83º N derived from MAGSAT satellite data. Geophys. Res. Lett. 9, 281—284.

Dimitriu R. G., Seghedi A., Sava S. C., Oaie G., 2000. Geotectonic frame outlined by 3D interpretation of geophysical data in Danube delta region (Romania). Romanian Geophys., 7, 114—117.

Dziewonsky A. M., Anderson D. I., 1981. Preliminary reference Earth model. Phys. Earth Planet. Int. 25, 297—356.

Finetti I., Bricchi G., Del Ben A., Pipan M., Xuan Z., 1988. Geophysical study of the Black Sea area. Boll. Geofis. Teor. Appl. 30 (117-118), 197—324.

Galushkin Yu. I., Shreider A. A., Bulychev A. A., Shreider Al. A., 2006. Heat flow and thermal evolution of the Black Sea lithosphere. Oceanology 46, 274—29.

Gardner G. H. F., Gardner L. W., Gregory A. R., 1974. Formation velocity and density. The diagnostic basics for stratigraphic traps. Geophysics 39, 770—780.

Georgiev G., 2012. Geology and Hydrocarbon Systems in the Western Black Sea. Turkish J. Earth Sci. 21, 723—754.

Graham R., Kaymakci N., Horn B. W., 2013. The Black Sea: Something different? Geo ExPro 10, 58—66.

Grant F. S., West G. F., 1966. Interpretation Theory in Applied Geophysics. Instituto de libro, № 1002, Vedado Habana. 584 p.

Guzhikov A. Yu., Arkad’ev V. V., Baraboshkin E. Yu., Bagaeva M. I., Piskunov V. K., Rud’ko S. V., Perminov V. A., Manikin A. G., 2012. New Sedimentological, Bio- and Magnetostratigraphic Data on the Jurassic—Cretaceous Boundary Interval of Eastern Crimea (Feodosiya). Stratigraphy and Geological Correlation 20, 261—294.

Haines G. V., 1985. Magsat vertical field anomalies above 40 N from spherical Cap Harmonic Analysis. J. Geophys. Res. 90, 2593—2598.

Hammer S., 1963. Deep gravity interpretation by stripping. Geophysics 3, 369—378.

Harvey P. K., Brewer T. S., Pezard P. A., Petrov V. A. eds., 2005. Physical Properties of crystalline Rocks. Geol. Soc. London Spec. Publ. 240, 351 p.

Hippolyte J.-C., Muller C., Kaymakci N., Sangu E., 2010. Dating of the Black Sea Basin: new nannoplankton ages from its inverted margin in the Central Pontides (Turkey). In: Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Eds. M. Sosson, N. Kaymakci, R. A. Stephenson, F. Bergerat, V. Starostenko. Geol. Soc. London Spec. Publ. 340, 113—136.

Kaymakci N., Duermeijer C. E., Langreis C., White S. H., van Dijk P. M., 2003. Paleomagnetic evolution of the Çankiri Basin (central Anatolia, Turkey): implications for oroclinal bending due to indentation. Geology Magazine 140, 343—355.

Kaymakci N., Graham R., Bellingham P., Horn B. W., 2014. Geological Characteristics of Black Sea Basin: Inferences from New Black Sea Seismic Data. AAPG Datapages/Search and Discovery Article 90194. International Conference & Exhibition, Istanbul, Turkey, September 14—17, 2014.

Khriachtchevskaia O., Stovba S., Popadyuk I., 2009. Hydrocarbon prospects in the Western Black Sea of the Ukraine. The Leading Edge 28(9), 1024—1029.

Kozlenko Yu. V., Kozlenko M. V., Lysynchuk D. V., 2009. Interdisciplinary seismic structural modelling hydrocarbon prospective structures in the western Black Sea. Geology and mineral recourses of the World Ocean 3, 25—34 (in Russian).

Kravchenko S. N., Orlyuk M. I., Rusakov O. M., 2003. A new approach to interpreting the regional Western Black Sea magnetic anomaly. Geophys. J. 25(2), 135—144 (in Russian).

Kutas R. I., 2003. Analysis of thermomechanic models of the Black Sea sedimentary evolution. Geophys. J. 25(2), 36—47 (in Russian).

Kutas R. I., 2010. Geothermal conditions of the Black Sea basin and its adjacent areas. Geophys. J. 32(6), 135—158 (in Russian).

Kutas R. I., Kobolev V. P., Bevzyuk M. I., Kravchuk O. P., 2003. New heat flow determinations in the NW Black Sea. Geophys. J. 25(2), 48—53 (in Russian).

Kutas R. I., Kobolev V. P., Bevzyuk M. I., Kravchuk O. P., 1999. Results of the heat flow determinations in the NW sector of the Black Sea basin. Geophys. J. 19(6), 70—83 (in Russian).

Kutas R. I., Kobolev V. P., Tsvyaschenko V. A., 1998. Heat flow and geothermal model of the Black Sea depression. Tectonophysics 291, 91—100.

Kutas R. I., Tsvyaschenko V. A., 1993. Influence of sedimentation on the heat field of the Black Sea depression. Geophys. J. 15(1), 32—34 (in Russian).

Kutas R. I., Tsvyaschenko V. A., Korchagin I. N., 1989. Heat field modeling of the continental lithosphere. Kiev: Naukova Dumka, 191 p. (in Russian).

Kutas R. I., Palyi S. I., Rusakov O. M., 2004. Deep faults, heat flow and gas leakage in the northern Black Sea. Geo-Mar. Lett. 24, 163—168.

Kutas R., Poort J., 2008. Regional and local geothermal conditions in the southern Black Sea. Int. J. Earth Sci. 97, 353—363.

Kutas R., Poort J., Klerx J., Kravchuk O., Bevzyuk M., 2005. Geothermal conditions in zones of gas escape and mud volcanism in northern Black Sea. Geophys. J. 27(1), 128—135.

Makarenko I. B., 1997. Earth’s crust structure of the Black Sea basin as inferred from gravity modelling. PhD Thesis. Instutute of Geophysics, National Academy of Sciences of Ukraine, Kiev.

Mavko G., Mukerji T., Dvorkin J., 2009. The Rock Physics Handbook. Tools for Seismic Analysis of Porous Media. New York: Cambridge University Press. 511p.

Nikishin A. M., Okay A., Tüysüz O., Demirer A., Wannier M., Amelin N., Petrov E., 2015a. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Marine and Petroleum Geology 59, 636—655.

Nikishin A. M., Okay A., Tüysüz O., Demirer A., Wannier M., Amelin N., Petrov E., 2015b. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Marine and Petroleum Geology 59, 656—670.

Nikishin A. M., Korotaev M. V., Ershov A. V., Brunet M. F., 2003. The Black Sea basin: tectonic history and Neogene-Quaternary rapid subsidence modelling. Sedimentary Geology 156, 149—168.

Nikishin A. M., Ziegler P. A., Bolotov S. N., Fokin P. A., 2011. Late Palaeozoic to Cenozoic Evolution of the Black Sea-Southern Eastern Europe Region: A View from the Russian Platform. Turkish J. Earth Sci. 20, 571—634.

Nikishin A. M., Khotylev A. O., Bychkov A. Yu., Kopaevich F., Petrov E. I., Yapaskurt V. O., 2013. Cretaceous Volcanic Belts and the Evolution of the Black Sea. Moscow University Geology Bull. 68, 141—154.

Okay A. I., Sengör A. M. C., Görür N., 1994. Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 22, 267—270.

Pashkevich I. K., Mozgovaya A. P., Orlyuk M. I., 1993. Three-dimensional magnetic model for Crimea and adjacent areas: application to seismic zoning. In: Geodynamics and deep structure of the seismogenetic zones in Ukraine. Ed. A. V. Chekunov. Kiev: Naukova Dumka, 9—18 (in Russian).

Pashkevich I. K., Orlyuk M. I., Bogdanova S. V., 1995. Large-scale magnetic segments of Europe, their juncture zones and relationships with tectonic units. 9th meeting of the Association of European Geological Societies. Precambrian Europe: Stratigraphy, Structure Evolution and Mineralization. St. Petersbourg, 85—86.

Piip V. B., Ermakov A. P., 2011. Oceanic crust of the Black Sea Basin based on seismic data. Moscow University Geology Bull. 66, 61—68.

Pivovarov V. P., Logvin V. N., 2001. On interactive fitting of a seismo gravity model and relationship of «velocity/density» along CMRW-DSS profiles of Azov-Black Sea region. Abstracts. 3rd international conference «Crimea-2001» Simferopol, «Tavriia Plus». 122—124.

Rangin C., Bader A. G., Pascal G., Ecevitoğlu B., Görür N., 2002. Deep structure of the Mid Black Sea High (offshore Turkey) imaged by multi-channel seismic survey (BLACKSIS cruise). Marine Geology 182, 265—278.

Robinson A. G. ed., 1997. Regional and Petroleum Geology of the Black Sea and Surrounding Region. American Association of Petroleum Geologists Memoir. 68, 385 p. Ross D. A., 1978. Summary of results of Black Sea drilling. Init. Rep. DSDP XLII, 1149—1177.

Rybach L., 1996. Heat sources, heat transfer, and rock types in the lower continental crust-inference from deep drilling. Tectonophysics 257, 1—6.

Rybach L., Buntebarth G., 1982. Relationship between the petrophysical properties, density, seismic velocity, heat generation and mineralogical constitution. Earth Planet. Sci. Lett. 57, 367—376.

Saintot A., Stephenson R. A., Stovba S. M., Brunert M. -F., Yegorova T., Starostenko V., 2006. The evolution of the southern margin of Eastern Europe (Eastern European and Scythian platforms) from the latest Precambrian-Early Palaeozoic to the Cretaceous. In: European Dynamics Lithosphere. Eds. D. G. Gee, R. A. Stephenson. Geol. Soc. London Memoir. 32, 481—505.

Sandwell D. T., Smith W. H. F., 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate. J. Geophys. Res. 114, B01411. doi:10.1029/2008JB006008.

Sclater J. G., Jaupart C., Galson D., 1980. The heat flow through oceanic and continental crust and the heat loss of the earth. Rev. Geophys. Space Phys. 18, 269—311.

Scott S. L., 2009. Formation and evolution of the eastern Black Sea Basin: constraints from wide-angle data. Ph.D. Thesis. Southampton University, UK.

Scott S. L., Shillington D. J., Minshull T. A., Edwards R. A., Brown P. J., White N. J., 2009. Wide-angle seismic data reveal extensive overpressure in the Eastern Black Sea Basin. Geophys. J. Int. 178, 1145—1163.

Shillington D. J., Scott S. L., Minshul T. A., Edwards R. A., Brown P. J., White N. J., 2009. Abrupt transition from magma-starved to magma-rich rifting in the EasternBlack Sea. Geology 75, 7—10.

Shreider A. A., Kazmin V. G., Lygyn V. S., 1997. Magnetic anomalies and the problem of an age of the Black Sea Basin. Geotectonics 31, 54—64.

Slishinsky S. B., Zhadan A. M., Popadyuk I. V., 2007. Preliminary results of regional seismic studies of CDPM within the Ukrainian sector of the Black Sea. Problems of oil and gas industry. Collection of scientific transactions. Kyiv, Issue 5, 140—147 (in Ukrainian).

Smith R. P., Grauch V. J. S., Blackwell D. D., 2002. Preliminary Results of a High-Resolution Aeromagnetic Survey to Identify Buried Faults at Dixie Valley, Nevada. Geothermal Resources Council Transactions 26, 543—546.

Sollogub V. B. ed., 1987. The Geology of the USSR shelf. Tectonics. Kiev: Naukova Dumka, 153 c. (in Russian).

Spadini G., Robinson A., Cloetingh S., 1996. Western versus Eastern Black Sea tectonic evolution: pre-rift lithospheric controls on basin formation. Tectonophysics 266, 139—154.

Sreejith K. M., Radhakrishna M., Krishna K. S., Majumdar T. J., 2011. Development of the negative gravity anomaly of the 85◦E Ridge, northeastern Indian Ocean – A process oriented modelling approach. J. Earth Syst. Sci. 120, 605—615.

Starostenko V., Buryanov V., Makarenko I., Rusakov O., Stephenson R., Nikishin A., Georgiev G., Gerasimov M., Dimitru R., Legostaeva O., Pchelarov V., Sava C., 2004a. Topography of the crust-mantle boundary beneath the Black Sea. Tectonophysics 381, 211—233.

Starostenko V. I., Dolmaz M. N., Kutas R. I., Rusakov O. M., Oksum E., Hisarli Z. M., Okyar M., Kalyoncuoglu U. Y., Tutunsatar H. E., Legostaeva O. V., 2014. Thermal structure of the crust in the Black Sea: comparative analysis of magnetic and heat flow data. Mar. Geophys. Res. 35, 345—359. doi 10.1007/s11001-014-9224-x.

Starostenko V. I., Legostaeva O. V., 1998. Calculations of the gravity field from an inhomogeneous, arbitrary truncated vertical rectangular prism. Izvestiya, Physics of the Solid Earth 34(12), 991—1003.

Starostenko V. I., Legostaeva O. V., Makarenko I. B., Pavlyuk E. V., Sharypanov V. M., 2004b. On automated computing geologic-geophysical maps images with the first type breaks and interactive regime visualization of three-dimensional geophysical models and their fields. Geophys. J. 26(1), 3—13 (in Russian).

Starostenko V. I., Makarenko I. B., Rusakov O. M., Pashkevich I. K., Kutas R. I., Legostaeva O. V., 2010. Geophysical inhomogeneities of the Black Sea Megadepression. Geophys. J. 32(5), 3—20 (in Russian).

Starostenko V. I., Pashkevich I. K., Makarenko I. B., Rusakov O. M., Kutas R. I., Legostaeva O. V., 2005. Fault tectonics of the crystalline crust on the NW Black Sea shelf. Geophys. J. 27(2), 195—207 (in Russian).

Stephenson R. A., Stovba S. M., 2012. The Dnieper-Donets Basin. In: Regional Geology and Tectonics: Phanerozoic Rift Systems and Sedimentary Basins. Eds. D. G. Roberts, A. W. Bally. Oxford: Elsevier, Vol. 18, 421—441.

Stovba S. M., Khriachtchevskaia O. I., Popadyuk I. V., 2013. Crimea and Ukrainian Eastern Black Sea Basin as an Inverted Early Cretaceous Rift System. Eastern Black Sea and Caucasus Workshop. Abstracts Volume. June 24—25, 2013.Tbilisi, Georgia, 5—67.

Taylor P., Heirtzler J., Nazarova K., Pashkevich I., Orlyuk M., 1995. The nature of the Kursk Magnetic anomaly from modeling Magsat and aeromagnetic data. IUGG XXI General Assembly. Boolder. 5—14 August, 1995.

Tugolesov D. A., Gorshkov A. S., Meisner L. B., Solovyev V. V., Khakhalev E. M., 1985. Tectonics of Mesozoic-Cenozoic deposits of the Black Sea basin. Moscow: Nedra, 216 p. (in Russian).

Winchester J. A., Pharaon T. C., Verniers J., Ioann D., Seghedi A., 2006. Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. In: European Lithosphere Dynamics. Eds. D. S. Gee, R. A. Stephenson. Geol. Soc. London Memoir 32, 323—332.

Wolberg J., 2005. Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments. Berlin, Heidelberg: Springer-Verlag, 251 p.

Wyllie P. J., 1979. Magmas and volatile components. Amer. Mineral. 64, 469—500.

Yegorova T., Baranova K., Omelchenko V., 2010. The crustal structure of the Black Sea from the reinterpretation of deep seismic sounding data acquired in the 1960s. In: Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Eds. M. Sosson, N. Kaymakci, R. A. Stephenson, F. Bergerat, V. Starostenko. Geol. Soc. London Spec. Publ. 340, 43—56.

Yegorova T., Gobarenko V., 2010. Structure of the Earth’s crust and upper mantle of the West- and East Black Sea Basins Revealed from geophysical data and its tectonic implications. In: Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Eds. M. Sosson, N. Kaymakci, R. A. Stephenson, F. Bergerat, V. Starostenko. Geol. Soc. London Spec. Publ. 340, 23—42.

Yegorova T., Gobarenko V., Yanovskaya T., 2013. Lithosphere structure of the Black Sea from 3-D gravity analysis and seismic tomography. Geophys. J. Int. 193(is. 1), 287—303. doi: 10.1093/gji/ggs098.

Ziegler P. A., 1982. Geological Atlas of Western and Central Europe. 2nd ed. Amsterdam: Shell Int. Petrol. Mij. B. V. and Elsevier Science Publ. 130 p. and 40 encl.

Zonenshain L. P., Le Pichon X., 1986. Deep basins of the Black Sea and Caspian Sea as remnant of Mesozoic back-arc basins. Tectonophysics 123, 181—211.

Downloads

Published

2015-03-01

How to Cite

Starostenko, V. I., Rusakov, O., Pashkevich, I., Kutas, R., Makarenko, I., Legostaeva, O., Lebed, T., & Savchenko, A. (2015). Heterogeneous structure of the lithosphere in the Black Sea from a multidisciplinary analysis of geophysical fields. Geofizicheskiy Zhurnal, 37(2), 3–28. https://doi.org/10.24028/gzh.0203-3100.v37i2.2015.111298

Issue

Section

Articles