Vizualizing of MTS data by the method of scalar impedances for numerical models of elementary conducting structures

T.I. Prychepiy

Keywords


Magnetotelluric sounding; visualization; 3 D modeling; scalar impedance; conductive structures

References


Aboul-Atta O.A., Boerner W.M., 1975. Vectorial Impedance Identity for the Natural Dependence of Harmonic Fields on Closed Boundaries. Canadian. Phys. 53 (15), 1404—1407.

Berdichevsky M.N., Dmitriev V.I., 2009. Models and Methods of Magnetotellurics. Moscow: Nauchnyj mir, 680 p. (in Russian).

Burahovich T.K., Tonkovid E.M., 2005. Frequency characteristics of anomalous field geomagnetic variations in the conditions of three-dimensional geoelectric medium. Geofizicheskij zhurnal 27 (4), 646—654 (in Russian).

Mackie R.L., Smith J. T., Madden T.R., 1994. Three dimensional electromagnetic modeling using finite difference equations: the magnetotelluric example. Radio Sci. 29, 923—935.

Prichepiy T.I., 2012. Dependence of scalar impedance on the azimuth of complex vector of magnetic field. Geofizicheskij zhurnal 34 (3), 129— 136 (in Russian).

Prychepiy T.I., 2006. Determination of impedance type parameters by electromagnetic field values. Geofizicheskij zhurnal 28 (1), 121—129 (in Russian).

Prychepiy T.I., 2010. Scalar parameters of impedance type as a function of magnetic field polarization. Geofizicheskij zhurnal 32 (3), 93—105 (in Russian).

Shuman V.N., 2004. Exact boundary conditions of the impedance type in inverse problems of magnetotelluric and magnetovariation sounding. Geofizicheskij zhurnal 26 (5), 39—49 (in Russian).

Shuman V.N., 2006. Methods and models of electromagnetic sounding systems: state, limitations and new abilities. Geofizicheskij zhurnal 28 (1), 17—30 (in Russian).

Shuman V.N., 2010. Magneto-telluric impedance: fundamental models and possibilities of their generalization. Geofizicheskij zhurnal 32 (3), 18— 28 (in Russian).




DOI: https://doi.org/10.24028/gzh.0203-3100.v36i3.2014.116060

Refbacks

  • There are currently no refbacks.