Geomagnetic field and climate variability. 1. Spatial-temporal distribution of geomagnetic field and climatic parameters during XX century

Authors

  • V.G. Bakhmutov S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • V. F. Martazinova The Ukrainian Hydrometeorological Institute of the National Academy of Sciences of Ukraine and the State Service of Ukraine for Emergency Situations, Ukraine
  • N.A. Kilifarska National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Bulgaria
  • G. V. Melnyk S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • E. K. Ivanova The Ukrainian Hydrometeorological Institute of the National Academy of Sciences of Ukraine and the State Service of Ukraine for Emergency Situations, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v36i1.2014.116153

Keywords:

geomagnetic field, climate changes, surface temperature and atmosphere pressure

Abstract

Analysis of main geomagnetic field (from IGRF model) and climatic parameters (near surface air temperature and surface pressure) allows us to determine their variability and spatial-temporal relations between them during the 20th. Integral characteristics and dynamics of the above parameters in latitudinal band 40-70 ° N have been investigated, applying one and the same approach. This gives us the possibility to reveal their global and regional characteristics - the differences and similarities between them. Three distinct periods of the spatial-temporal distribution of geomagnetic field intensity have been determined, that could be connected to corresponding periods of mean near surface air temperature evolution during the 20th century: initial global warming (1911-1943); stabilization (end of 1940 s - middle 1970 s); secondary global warming (middle of 1970 s - 2000 s). There is a good correspondence between geomagnetic field, near surface air temperature and pressure spatial distributions during the 20th century. The high coefficient of similarity between integral spatial distributions of geomagnetic field intensity F and surface air temperature T (RFT ) = - 0,83 is quite unexpected. It indicates that relations between them could hardly be a random connection. If there is a causal relation between them, it obviously should be in the direction: geomagnetic filed influence on the temperature and / or surface pressure. The main problem in this case is that the mechanisms of magnetic filed influence on climatic parameters are less investigated and poorly understood. In this paper geomagnetic field is considered to be a first element of the causal chain of processes relating it with Earth's climate. A brief review of resent understanding of solar - geomagnetic field influence on climate shows that the main role in this process is played by galactic cosmic rays. Results presented here are basement for the second part of this paper, where the causal link of the processes connecting geomagnetic field with galactic cosmic rays, ozone and water vapour near the tropopause (with their influence on the radiation balance of the planet and consequently on climate) is thoroughly analysed.

References

Авдюшин С.И., Данилов А.Д. Солнце, погода и климат: сегодняшний взгляд на проблему (обзор). Геомагнетизм и аэрономия. 2000. Т. 40, №5. C. 3-14

Бахмутов В.Г. Палеовековые геомагнитные вариации. Киев: Наук. думка, 2006. 298 с

Бахмутов В.Г., Мартазинова В. Ф., Иванова Е.К., Мельник Г. В. Изменения главного магнитного поля и климата в XX веке. Доп. НАНУ. Науки про Землю. 2011. № 7. C. 90-94

Бондарь T.H., Головков В.П., Яковлева С.В. Магнитное поле Земли в XX веке. Геомагнетизм и аэрономия. 2006. Т. 46, № 3. C. 409-422

Бондарь T.H., Головков В.П., Яковлева С.В. Региональные особенности векового хода геомагнитного поля. Геомагнетизм и аэрономия. 2008. Т. 48, № 4. С. 553-560

Веретененко С. В., Пудовкин М. И. Вариации прихода суммарной радиации как возможный энергетический источник долгопериодных эффектов солнечной активности в атмосферной циркуляции. Геомагнетизм и аэрономия. 2000. 40, № 1. C. 77-83

Веретенко С.В., Пудовкин М.И. Эффекты вариаций космических лучей в циркуляции нижней атмосферы. Геомагнетизм и аэрономия. 1993. Т. 33, № 6. С. 35-39

Витинский Ю.И., Оль А.И., Сазонов Б.И. Солнце и атмосфера Земли. Ленинград: Гидроме-теоиздат, 1976. 351 c

Демина И. М., Никитина Л. В., Фарафонова Ю. Г. Вековые вариации главного магнитного поля Земли в рамках динамической модели его источников. Геомагнетизм и аэрономия. 2008. Т. 48, № 4. С. 567-575

Мартазинова В.Ф., Бахмутов В.Г. К вопросу о связи геомагнитной активности и атмосферной циркуляции. Геофиз. журн. 2006. Т. 28, № 4. С. 135-139

Мартазинова В.Ф., Иванова Е.К. Характерные особенности синоптических процессов различной вероятности конца ХХ - начала ХХІ столетий. B кн.: Глобальные и региональные изменения климата. Киев: Ника-Центр, 2011. С. 86-95

Мартазинова В.Ф., Свердлик T.A. Крупномасштабная атмосферная циркуляция XX столетия, ее изменения и современное состояние. Тр. УкрНИГМИ. 1998. Вып. 246. С. 21-27

Пудовкин М.И. Влияние солнечной активности на состояние нижней атмосферы и погоду. Соросов. образоват. журн. 1996. № 10. С. 106- 113

Пудовкин М. И., Распопов О. М. Механизм влияния солнечной активности на состояние нижней атмосферы и метеопараметры. Геомагнетизм и aэрономия. 1992. Е. 32, № 5. С. 1-22

Bakhmutov V., 2006. The connection between geomagnetic secular variation and long-range development of climate changes for the last 13,000 years: the data from NNE Europe. Quaternary Int. 149. 4-11. doi:10.1016/j.quaint. 2005.11.013.

Bard E., Delaygue G., 2007. Comment on "Are there connections between Earth's magnetic field and climate?" by Courtillot, V., Gallet, Y., Le Mo-uel, J.L., Fluteau, F., and Genevey, A., Earth Planet. Sci. Let., 253, 328-339, 2007. Earth Planet. Sci. Let. 265, Is. 1-2, 302-307.

Bard E., Frank M., 2006. Climate change and solar variability: what's new under the sun? Earth Planet. Sci. Let. 248, 1-14.

Bard E., Raisbeck G., Yiou F., Jouzel J., 2000. Solar irradiance during the last 1200 yr based on cosmogenic nuclides. Tellus, Ser. B Chem. Phys. Meteorol. 52, 985-992.

Brohan P., Kennedy J.J., Harris I., Tett S.F.B., Jones P.D., 2006. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res. 111, D12106. doi:10.1029/2005JD006548.

Bucha V., 1988 a. Influence of corpuscular radiation on changes in the middle atmosphere and troposphere. Adv. Space Res. 8(2), (7) 205-(7) 210.

Bucha V., 1988b. Influence of solar activity on atmospheric circulation types. Ann. Geophys., 6(5), 513-524.

Bucha V., Bucha V. Jr., 1998. Geomagnetic forcing of changes in climate and in the atmospheric circulation. J. Atmos. Sol.-Ter. Phys. 60(2), 145- 169.

Calisto M., Usoskin I., Rozanov E., Peter T., 2011. Influence of galactic cosmic rays on atmospheric composition and temperature. Atmos. Chem. Phys. Discuss. 11, 653-679.

Carslaw K.S., Harrison R.G., Kirkby J., 2002. Cosmic rays, clouds and climate. Science 298, 1732- 1737.

Chapman W.A., Cross M.J., Flower D.A., Peckham G.E., Smith S.D., 1974. A spectral analysis of global atmospheric temperature fields observed by the selective chopper radiometer on the Nimbus 4 satellite during the year 1970. Proc. Roy. Soc. A338, № 1612, 67-76.

Cliver E.W., Boriakoff V., Feynman J., 1998. Solar variability and climate change: geomagnetic aa index and global surface temperature. Geophys. Res. Lett. 25, 1035-1038.

Courtillot V., Gallet Y., Le Mouël J.L., Fluteau F., Genevey A., 2008. Response to Comment on "Are there connections between Earth's magnetic field and climate? Earth Planet. Sci. Lett., 253, 328-339, 2007" by Bard, E., and Delaygue, M., Earth Planet. Sci. Let., in press, 2007. Earth. Planet. Sci. Lett. 265, 308-311.

Courtillot V., Gallet Y., Le Mouël J.L., Fluteau F., Genevey A., 2007. Are there connections between Earth's magnetic field and climate? Earth. Planet. Sci. Let. 253, 328-339.

Courtillot V., Le Mouël J.L., Ducruix J., Cazenave A., 1982. Geomagnetic secular variation as a precursor of climatic change. Nature 297, 386-387.

Crowley T.J., 2000. Causes of climate change over the past 1000 years. Science 289, 270-277.

Doake C.S.M., 1978. Climatic change and geo-magnetic field reversals: A statistical correlation. Earth Planet. Sci. Lett. 38(2), 313-318.

Douglass D.H., Clader B.D., 2002. Climate sensitivity of the Earth to solar irradiance. Geophys. Res. Lett. 29(16), 1786. doi:10.1029/2002GL015345.

El-Borie M.A., Al-Thoyaib S.S., 2006. Can we use geomagnetic activity index to predict partially the variability in global mean temperature? Int. J. Phys. Sci. 1 (2), 67-74.

Elias A.G., Zossi de Artigas M., de Haro Barbas B.F., 2010. Trends in the solar quiet geomagnetic field variation linked to the Earth's magnetic field secular variation and increasing concentrations of greenhouse gases. J. Geophys. Res. 115, A08316. doi:10.1029/2009JA015136.

Foukal P.A., 2002. Comparison of variable solar total and ultraviolet irradiances in the 20th century. Geophys. Res. Let. 29(23), 2107-2110. doi: 10.1029/2002GL015474.

Foukal P., Fröhlich C., Spruit H., Wigley T.M.L., 2006. Variations in solar luminosity and their effect on the Earth's climate. Nature 443, 161- 166.

Friis-Christensen E., Lassen K., 1991. The length of the solar cycle: an indicator of solar activity closely associated with climate. Science 254, 698- 700.

Gallet Y., Genevey A., Courtillot V., 2003. On the possible occurrences of "archeomagnetic jerks" in the geomagnetic field over the past three millenia. Earth Planet. Sci. Lett. 214, 237-242.

Gallet Y., Genevey A., Fluteau F., 2005. Does Earth's magnetic field secular variation control centennial climate change? Earth Planet. Sci. Lett. 236, 339-347.

Gerhard W.G., Livingstone D.M., Masarik J., Mu-scheler R., Beer J., 2001. Some results relevant to the discussion of a possible link between cosmic rays and Earth's climate. J. Geophys. Res. 106 (D4), 3381-3387.

Haigh J.D., 2003. The effect of solar variability on the Earth's climate. Philos. Trans. R. Soc. London. A361, 95-111.

Kiehl J.T., Trenberth K.E., 1997. Earth's annual global mean energy budget. Bull. Amer Meteorolog. Soc. 78(2), 197-208.

Kerton A.K., 2009. Climate change and the Earth's magnetic poles, a possible connection. Energy & Environment 20(1-2), 75-83.

Kilifarska N.A., 2012. Climate sensitivity to the lower stratospheric ozone variations. J. Atmos. Sol-Ter. Phys. 90-91, 9-14.

Kilifarska N.A., Bakhmutov V. G., Mel'nyk G. V., 2013. Geomagnetic influence on Antarctic Climat - Evidences and Mechanism. Int. Rev. Physics 7(3), 242-252.

Kirkby J., 2007. Cosmic rays and climate. Surv. Geophys. 28, 333-375.

Kitaba I., Masayuki Hyodoa, Shigehiro Katohb, David L. Dettmanc, Hiroshi Satod., 2013. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 110(4), 1215-1220.

Kovaltsov G.A., Usoskin I.G., 2007. Regional cosmic ray induced ionization and geomagnetic field changes. Adv. Geosci. 13, 31-35.

Kristjansson J.E., Kristiansen J., Kaas E., 2004. Solar activity, cosmic rays, clouds and climate - an update. Adv. Space Res. 34, 407-415.

Le Mouel J.L., Kossobokov V., Courtillot V., 2005. On long-term variations of simple geomagnetic indices and slow changes in magnetospheric currents. The emergence of anthropogenic global warming after 1990? Earth Planet. Sci. Lett. 232, 273-286.

Lean J., Rind D., 2001. Earth's response to a variable sun. Science 292, 234-236.

Lockwood M., Fröhlich C., 2007. Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc. R. Soc. A, 1-14. doi:10.1098/rspa.2007.1880.

Lockwood M., 2012. Solar Influence on Global and Regional Climates. Surv Geophys. 33, 503-534.

Love J.J., Mursula K., Tsai V.C., Perkins D.M., 2011. Are secular correlations between sunspots, geomagnetic activity, and global temperature significant? Geophys. Res. Lett. 38, L21703. doi:10.1029 /2011GL049380.

Mufti S., Shah G. N., 2011. Solar-geomagnetic activity influence on Earth's climate. J. Atmos. Sol-Terr. Phys. 73(13), 1607-1615.

Ney E.P., 1959. Cosmic radiation and the weather. Nature 183, 451-452.

Olsen N., Mandea M., 2007. Will the Magnetic North Pole Move to Siberia? Eos Trans. AGU 88(29), 293-300.

Pudovkin M.I., Veretenenko S.V., 1997. Effects of the galactic cosmic ray variations on the solar radiation input in the lower atmosphere. J. Atmos. Sol.-Ter. Phys. 59(14), 1739-1746.

Pulkkinen T.I., Nevanlinna H., Pulkkinen P.J., Lockwood M., 2001. The Sun-Earth connection in time scales from years to decades and centuries. Space Sci. Rev. 95, 625-637.

Reid G.C., 1987. Influence of solar variability on global sea-surface temperatures. Nature 329(6135), 142-143.

Reid G.C., 1991. Solar total irradiance variations and the global sea-surface temperature record. J. Geophys. Res. 96 (D2), 2835-2844.

Reid G. C., 2000. Solar Variability and the Earth's Climate: Introduction and Overview. Space Sci. Rev. 94 (Is. 1-2), 1-11.

Scafetta N., West B.J., 2006. Phenomenological solar contribution to the 1900-2000 global surface warming. Geophys. Res. Lett. 33, L05708. doi:10.1029/2005GL025539.

Sharma M., 2002. Variations in solar magnetic activity during the last 200000 years: is there a Sun - climate connection? Earth Planet. Sci. Let. 199, 459-472.

Shea M.A., Smart D.F., 2004. Preliminary study of cosmic rays, geomagnetic field changes and possible climate changes. Adv. Space. Res. 34 (2), 420- 425.

Solanki S.K., Schusser M., Fligge M., 2002. Secular variation of the Sun's magnetic flux. Astron. As-trophys. 383, 706-712.

Solanki S.K., Krivova N.A., 2003. Can solar variability explain global warming since 1970? J. Geophys. Res. 108 (A5), 1200. doi:10.1029/2002JA00 9753.

Solanki S.K., Schusser M., Fligge M., 2000. Evolution of the Sun's large scale magnetic field since the Maunder minimum. Nature 408, 445-447.

Solanki S.M., Krivova N., 1999. A reconstruction of total solar irradiance since 1700. Geophys. Res. Lett. 26, 2465-2468.

Souza-Echer M.P.S., Echer E., Rigozo N.R., Brum C. G.M., Nordemann D.J.R., Gonzalez W.D., 2012. On the relationship between global, hemispheric and latitudinal averaged air surface temperature (GISS time series) and solar activity. J. Atmos. Sol.-Terr. Phys., 74, 87-93.

Souza-Echer M. P., Gonzalez W. D., Echer E., Nordemann D.J.R., Rigozo N.R., 2011. Long term relation between solar activity and surface temperature at different geographical regions. In: Comparative Magnetic Minima: Characterizing quiet times in the Sun and Stars: Proc. IAU Symposium (286) 418-422.

Stauning P., 2011. Solar activity - climate relations: A different approach. J. Atmos. Sol.-Terr. Phys. 73, 1999-2012

Svensmark H., 2000. Cosmic rays and Earth's climate. Space Sci. Rev. 93, 175-185.

Svensmark H., 1998. Influence of cosmic rays on Earth's climate. Phys. Rev. Lett. 81, 5027-5030.

Svensmark H., Friis-Christensen E., 1997. Variation of cosmic ray flux and global cloud coverage - a missing link in solar - climate relationships. J. Atmos. Sol.-Ter. Phys. 59, 1225-1232.

Tinsley B.A., 1996. Correlations of atmospheric dynamics with solar wind-induced changes of air-Earth current density into cloud tops. J. Geo-phys. Res. 101, Is. D23, 29701-29714.

Tinsley B.A., Hoeksema J.T., Baker D.N., 1994. Stratospheric volcanic aerosols and changes in air-earth current density at solar wind magnetic sector boundaries as conditions for the Wilcox tropospheric vorticity effect. J. Geophys. Res. 99 (D8), 16,805-16,813.

Usoskin I. G., Desorgher L., Velinov P., Storini M., Fluckiger E., Butikofer R., Kovaltsov G., 2009. Ionization of the Earth's Atmosphere by Solar and Galactic Cosmic Rays. Acta Geophys. 57(1), 88- 101.

Usoskin I.G., Schussler M., Solanki S.K., Mursula M., 2005. Solar activity, cosmic rays, and Earth's temperature: a millennium scale comparison. J. Geo-phys. Res. 110 (A10102). doi:10.1029/2004JA010 946.

Usoskin I.G., Solanki S.K., Schussler M., Mursula K., Alanko K., 2003. A millennium scale sunspot number reconstruction: evidence for an unusually active Sun since the 1940"s. Phys. Rev. Lett. 91. doi:10.1103/PhysRevLett.91.211101.

Valev D., 2006. Statistical relationships between the surface air temperature anomalies and the solar and geomagnetic activity indices. Phys. Chem. Earth. 31, 109-112.

Vieira L.E.A., da Silva L.A., 2006. Geomagnetic modulation of clouds effects in the Southern Hemisphere Magnetic Anomaly through lower atmosphere cosmic ray effects. Geophys. Res. Lett. 33. doi:10.1029/2006GL026389.

Vieira L.E.A., da Silva L.A., 2008. Are changes of the geomagnetic field intensity related to changes of the tropical Pacific sea-level pressure during the last 50 years? J. Geophys. Res. 1139 (A08 226).doi:10.1029/2008JA013052.

White W.B., Lean J., Cayan D.R., Dettinger M.D., 1997. Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res. 102 (C2), 3255-3266.

Wilson R.M., 1998. Evidence for solar-cycle forcing and secular variation in the Armagh observatory temperature record 1844-1992. J. Geo-phys. Res. 103 (D10), 11159-11171.

Wenyao X. U., Zigang W. E. I., Shizhuang M.A., 2000. Dramatic variations in the Earth's main magnetic field during the 20th century. Chinese Sci. Bul. 45(21), 2013-2016.

Published

2014-02-01

How to Cite

Bakhmutov, V., Martazinova, V. F., Kilifarska, N., Melnyk, G. V., & Ivanova, E. K. (2014). Geomagnetic field and climate variability. 1. Spatial-temporal distribution of geomagnetic field and climatic parameters during XX century. Geofizicheskiy Zhurnal, 36(1), 81–104. https://doi.org/10.24028/gzh.0203-3100.v36i1.2014.116153

Issue

Section

Articles