Self-organization and nonlocal nature of geophysical turbulence and planetary boundary layers


  • S. S. Zilitinkevich Lomonosov Moscow State University, Russian Federation



The classical paradigm of the theory of turbulence states that any turbulent flow can be considered as a superposition of the fully organized mean motion and the fully chaotic turbulence is characterized by the direct energy cascade (from larger to smaller eddies). Accordingly, the key tools for modeling geophysical flows are the concepts of the down-gradient turbulent transport (analogous to the molecular transport); the Kolmogorov theory of the inertial interval in the turbulence spectra; and, in atmospheric boundary-layer modeling, the Monin-Obukhov similarity theory. These tools have made a good showing as applied to a wide range of neutrally or weakly stratified geophysical and engineering flows. However, in strongly stable and especially in unstable stratification they face insurmountable difficulties. The point is that the very-high-Reynolds-number geophysical flows almost always include a type of chaotic motions, “strange turbulence”, missed in the classical theory and are characterized by the inverse energy cascade: from smaller to larger eddies, which leads to the self-organization in the form of long-lived, large-scale motions coexisting with the usual mean flow. The proposed new paradigm accounts for the strange turbulence and organized structures as additional inherent features of turbulent flows.


Голицын Г. С. Геострофическая конвекция // Докл. АН СССР. - 1980. - 251, № 6. - С. 1356- 1360.

Григорян С. С. Об осреднении физических полей // Докл. АН СССР. - 1980. - 254, № 4. - С. 846-850.

Колмогоров А. Н. Локальная структура турбулентности в несжимаемой жидкости при очень больших числах Рейнольдса // Докл. АН СССР. - 1941а. - 30, № 4. - С. 299-303.

Колмогоров А. Н. Рассеяние энергии при локально изотропной турбулентности // Докл. АН СССР. - 19416. - 32, № 1. - С. 19-21.

Колмогоров А. Н. Уравнения турбулентного движения несжимаемой жидкости // Изв. АН СССР, сер. физ. - 1942. - 6, № 1-2. - С. 56-58.

Кун Т. Структура научных революций (1962). - Рус. пер. - Москва: Изд. АСТ, 2003. - 605 с.

Монин А. С., Обухов А. М. Основные закономерности турбулентного перемешивания в приземном слое воздух // Тр. Геофиз. ин-та АН ССР. - 1954. - № 24 (151). - С. 163-187.

Монин А. С., Яглом А. М. Статистическая гидромеханика. - Москва: Наука, 1965. - Том 1. - 639 с.; 1967. - Том 2. - 720 с.

Фридман А. А. Опыт гидродинамики сжимаемой жидкости. - Ленинград-Москва, 1934.

Elperin T., Kleeorin N., Rogachevskii I., Zilitinkevich S. Formation of large-scale semi-organised structures in turbulent convection // Phys. Rev. E. - 2002. - 66. - Р. 1-15.

Elperin T., Kleeorin N., Rogachevskii I., Zilitinkevich S. Turbulence and coherent structures in geophysical convection // Boundary-Layer Meteorol. - 2006. - 119. - Р. 449-472.

Etling D., Brown R. A. Roll vortices in the planetary boundary layer: A review // Boundary-Layer Meteorol. - 1993. - 65. - Р. 215-248.

Gad-el-Hak M. Flow Control: Passive, Active and Reactive Flow Management. - London:Cambridge University. Press, 2000.

Garratt J. R. The Atmospheric Boundary Layer. - London: Cambridge University Press. - 1992. - 316 p.

Gibson C. H. Fossil turbulence revisited // J. Marine Systems. - 1999. - 21, № 1-4. - Р. 147-167.

Hunt J. C. R., Morrison J. F. Eddy structure in turbulent boundary layers. // Eur. J. Mech. B-Fluid. - 2000. - 19. - Р. 673-694.

Keller L. V., Fridman A. A. Differentialgleichung für die turbulente Bewegung einer kompressiblen Flüssigkeit // Proc. 1st Intern. Congr. Appl. Mech., Delft. - 1924. - Р. 395-405.

Kraichnan R. H. Inertial Ranges in Two-Dimensional Turbulence // Physics of Fluids. - 1967. - 10. - Р. 1417-1423.

Laval J.-P., McWilliams J., Dubrille B. Forced stratified turbulence:successive transitions with Reynolds number // Phys. Rev. - E 68. - Р. 247-257.

Morrison I., Businger S., Marks F., Dodge P., Busin-ger J. A. An observational case for the prevalence of roll vortices in the hurricane boundary layer // J. Atmos. Sci. - 2005. - 62. - Р. 2662-2673.

Tsinober A. An Informal Conceptual Introduction to Turbulence. - Springer, 2009. - 464 p.

Wyant M. C., Khairoutdinov M., Bretherton C. S. Climate sensitivity and cloud response of a GCM with a superparameterization. // Geophys. Res. Lett. - 2006. - 33, L06714 (DOI: 10.1029/2005GL025464).

Zakharov V. E., L'vov V. S., Falkovich G. Kolmogorov Spectra of Turbulence I: Wave Turbulence. - Springer-Verlag, 1992.

Zilitinkevich S. Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer // Quart, J. Roy. Met. Soc. - 2002. - 128. - Р. 913-925.

Zilitinkevich S. S., Elperin T., Kleeorin N., Rogachevskii I. Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes // Boundary-Layer Meteorol. - 2007. - 125. - Р. 167-192.

Zilitinkevich S. S, Gryanik V. M., Lykossov V. N., Mironov D. V. A new concept of the third-order transport and hierarchy of non-local turbulence closures for convective boundary layers // J. Atmos. Sci. - 1999. - 56. - Р. 3463-3477.

Zilitinkevich S. S., Elperin T., Kleeorin N., L'vov V., Rogachevskii I. Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part II: The role of internal gravity waves. // Boundary-Layer Meteorol. - 2009. - 133. - Р. 139-164.

Zilitinkevich S. S., Elperin T., Kleeorin N., Rogachevskii I., Esau I., Mauritsen T., Miles M. W. Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes // Quart. J. Roy. Met. Soc. - 2008. - 134. - Р. 793-799.

Zilitinkevich S. S., Hunt J. C. R., Grachev A. A., Esau I. N., Lalas D. P., Akylas E., Tombrou M., Fairall C. W., Fernando H. J. S., Baklanov A., Jof-fre S. M. The influence of large convective eddies on the surface layer turbulence // Quart. J. Roy. Met. Soc. - 2006. - 132. - Р. 1423-1456.



How to Cite

Zilitinkevich, S. S. (2010). Self-organization and nonlocal nature of geophysical turbulence and planetary boundary layers. Geofizicheskiy Zhurnal, 32(6), 169–174.