DOI: https://doi.org/10.24028/gzh.0203-3100.v40i3.2018.137173

Geothermy and zoning of shale oil prospects of the Koltogor-Urengoy paleorift (southeastern part of West Siberia)

V. I. Isaev, G. A. Lobova, V. V. Stotskiy, A. N. Fomin

Abstract


Zoning of shale oil content at the southern segment of the Koltogor-Urengoy paleorift were done and it were correlated with geothermal field in the after Jurassic time. Territory of research is the north-western oil fields of the Tomsk region. The thermal history of the source rocks is criteria for predicting centers of oil generation and the formation of shale reservoir. It is cumulatively taking into account the temperatures of localized paleocenteres of oil generation. Researches are based on solving a direct problem of geothermy for a set of horizontal layers located in the lower half-space. Distribution of the oil generation density has been obtained and zones for searching for shale Bazhenov oil have been identified — it is the northwestern slope of the Northern-Parabel’ megamonocline; the northeastern slope of the Kaimysov arch; the Cheremshanskaya mesosaddle and the Traygorod mezoswell. The prediction is confirmed by direct signs of the oil content of the Bazhenov suite. Distribution of the oil generation density of the Bazhenov oil in different structural-tectonic conditions has shown that the intensity of hydrocarbons generation on positive structures is similar to the generation density in depression. “Traces” of anomalous heat flow are not in the rift zone there during the Cenozoic period. Zone does not correlate with the paleotemperatures distribution in the after Jurassic time. There is the reflection of the paleorift; as an object with anomalous structural characteristic; in the distribution of generation density at the Upper Jurassic shale oil. The energy relationship of the paleorift with the distribution of heat flow density and paleotemperatures of the source rocks has not been identified. Zoning of the shale oil determined promising territories for setting up geological survey. The results are worth of attention in the context of the theoretical foundations of oil and gas geology of Western Siberia; the theory of rift systems and the oil and gas potential of the West Siberian plate.


Keywords


shale oil; Bazhenov formation; thermal history; zoning; energy characteristic of the Koltogor-Urengoy paleorift

References


Burshteyn L. M.; Zhidkova L. V.; Kontorovich A. E.; Melenevskiy V. N.; 1997. The model of katagenesis organic matter (for example; the Bazhenov Formation). Geologiya i geofizika; 38(6); 1070—1078 (in Russian).

Duchkov A. D.; Galushkin Yu. I.; Smirnov L. V.; Sokolova L. S.; 1990. The evolution of the temperature field of the sedimentary cover of the West Siberian plate. Geologiya i geofizika; 31(10); 51—60 (in Russian).

Ermakov V. I.; Skorobogatov V. A.; 1986. Thermal field and oil-and-gas the young plates of the USSR. Moscow: Nedra; 222 p. (in Russian).

Kontorovich A. E.; Surkov V. S. (Eds); 2000. Western Siberia. Geology and Mineral Resources of Russia. In the six volumes. Vol. 2. Saint Petersburg: VSEGEI; 477 p. (in Russian).

Zubkov M. Yu.; 2017. The reservoir potential of the Bazhenov formation: regional prediction. Geologiya i geofizika; 58(3-4); 504—10 (in Russian). doi: 10.15372/GiG20170313.

Isaev V. I.; Illarionova L. V.; Isayeva O. S.; Kokorina M. C.; 2016a. Shale oil potential of Bazhenov suite Tomsk region. Vestnik RAYEN (ZSO); (19); 30—36 (in Russian).

Isaev V. I.; Isayeva O. S.; Lobova G. A.; Starostenko V. I.; Fomin A. N.; 2016b. Express zoning of the maternal of suite on density of resources generated oil (for example Nyurol’ka Megadepression). Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov; 327(3); 23—37 (in Russian).

Isaev V. I.; Iskorkina À. À.; 2014. The Mesozoic and Cenozoic course of temperatures on the Earth’s surfaces and geothermal regime of the Jurassic oil source deposits (southern paleoclimatic zone of West Siberia). Geofizicheskiy zhurnal; 36(5); 64—80 (in Russian). doi: https: //doi.org/10.24028/gzh.0203-3100.v36i5.2014. 111569.

Isaev V. I.; Iskorkina A. A.; Lobova G. A.; Fomin A. N.; 2016c. Paleoclimates factors of reconstruction of thermal history of petroleum bazhenov and togur suites southeastern West Siberia. Geofizicheskiy zhurnal; 38(4); 3—25 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v38i4.2016.107798.

Isaev V. I.; Korzhov Yu. V.; Lobova G. A.; Popov S. A.; 2011. Oil and gas potential according to gravimetry; geothermy and geochemistry for the Far East and Western Siberia. Tomsk: TPU Publ. House; 384 p. (in Russian).

Isaev V. I.; Lobova G. A.; Korzhov Yu. V.; Kuzina M. Ya.; Kudryashova L. K.; Sungurova O. G.; 2014. Strategy and basis of technologies for hydrocarbon exploration in the pre-Jurassic basement of Western Siberia. Tomsk: TPU Publ. House; 112 p. (in Russian).

Isayev V. I.; Lobova G. A.; Mazurov A. K.; Starostenko V. I.; Fomin A. N.; 2018. Zoning of mega-depressions by shale oil generation density of togur and bazhenov source soites in the southeast of Western Siberia. Geologiya nefti i gaza; (1); 49—73 (in Russian).

Isaev V. I.; Lobova G. A.; Mazurov A. K.; Fomin A. N.; Starostenko V. I.; 2016d. Zoning of the Bazhenov formation and clinoforms Neocom density shale resources and primary accumulated oil (for example; Nurol’ka megahollow). Geofizicheskiy zhurnal; 38(3); 29—51 (in Russian).

Isaev V. I.; Lobova G. A.; Osipova Y. N.; Sungurova O. G.; 2016e. Zonation of megadepreios of the Tomsk region depending of the frequentness of shale oil resources. Neftegazovaya geologiya. Teoriya i praktika; 11(1); http: //www.ngtp.ru/rub/4/1_2016.pdf. (in Russian).

Isaev V. I.; Lobova G. A.; Starostenko V. I.; Stotsky V. V.; Fomin A. N.; 2017. Zoning of the shale oil area belonging to the southern part of the Koltogor-Urengoy Paleorift. Neftegazovaya geologiya. Teoriya i praktika; 12(2); http://ngtp.ru/rub/11/15_2017.pdf. (in Russian).

Kontorovich A. E.; Nesterov I. I.; Salmanov F. K.; Surkov V. S.; Trofimuk A. A.; Ervye Yu. G.; 1975. Geology of oil and gas in Western Siberia. Moscow: Nedra; 680 p. (in Russian).

Kontorovich V. A.; 2002. Tectonics and oil-and-gas bearing of the Mesozoic-Cenozoic deposits in southeastern of the Western Siberia. Novosibirsk: SB RAS Publ.; 253 p. (in Russian).

Lobova G. A.; Popov S. A.; Fomin A. N.; 2013. Probable oil resource localisation for Jurassic and Cretaceous oil-and-gas complexes in Ust-Tym mega depression. Neftyanoye khozyaystvo (2); 36—40 (in Russian).

Surkov V. S. (Ed.); 1986. Megacomplexes and deep structure of the Earth’s crust of the West Siberian plate. Moscow: Nedra; 149 p. (in Russian).

Morozov N. V.; Belenkaya I. Yu.; Zhukov V. V.; 2016. 3D modeling of hydrocarbon systems of the Bazhenov suite: details of the forecast of physical and chemical properties of hydrocarbons. PROheft; (1); 38—45 (in Russian). http://www.twirpx.com/file/2118767.

Predtechenskaya Ye. A.; Fomichev A. S.; 2011. The impact of faulting on thermal regime and catagenetic transformations of Mesozoic de-posits; West Siberian Plate. Neftegazovaya geologiya. Teoriya i praktika; 6(1); http://www. ngtp.ru/rub/4/2_2011.pdf. (in Russian).

Prishchepa O. M.; Sukhanov A. A.; Makarova I. R.; 2015. Method for determining the maturity of sapropelic organic matter in domanic and assessing their hydrocarbon resources. Geologiya; geofizika i razrabotka neftyanyh i gazovyh mestorozhdeniy; (7); 4—8 (in Russian).

Skvortsov M. B.; Nemova V. D.; Panchenko I. V.; Kirsanov A. M.; 2018. Criteria of oil bearing capacity of the Bazhenov formations. Geologiya nefti i gaza; (1); 109—114 (in Russian).

Starostenko V. I.; 1978. Stable numerical methods in problems of gravimetry. Kiev: Naukova Dumka; 228 p. (in Russian).

Fomin A. N.; 2011. Catagenesis of organic matter and oil-and-gas of the Mesozoic and Paleozoic deposits of the Western Siberian megabasin. Novosibirsk: IPGG SB RAS Publ.; 331p. (in Russian).

Harlend U. B.; Koks A. V.; Llevellin P. G.; Pikton K. A. G.; Smit A. G.; Uolters R.; 1985. Scale of geological time. Moscow: Mir; 140 p. (in Russian).

Khutorskoy M. D.; Ahmedzyanov V. R.; Ermakov A. V.; Leonov Yu. G.; Podgornykh L. V.; Poliak B. G.; Sukhikh E. A.; Cybulia L. A.; 2013. Geothermic of the Arctic Seas. Ed. Yu. G. Leonov. Moscow: GEOS; 232 p. (in Russian).

Duchkov A. D.; Sokolova L. S.; Ayunov D. E.; Yan P. A.; 2016. Thermal conductivity of the Bazhenovo Formation rocks in the Salym area (West Siberian Plate). Russian Geology and Geophysics; 57(7); 1078—1089. https://doi. org/10.1016/j.rgg.2016.06.007.

Isaev V. I.; 2013. Interpretation of High-Accuracy Gravity Exploration Data by Mathematic Programming. Russian Journal of Pacific Geology; 7(2); 92—106. doi: 10.1134/S18197140130 2005X.

Isaev V. I.; Fomin A. N.; 2006. Loci of Generation of Bazhenov- and Togur-Type Oils in the Southern Nyurol’ka Megadepression. Russian Geology and Geophysics; 47; 734—745.

Isaev V. I.; Iskorkina A. A; Lobova G. A.; Starostenko V. I.; Tikhotskii S. A.; Fomin A. N.; 2018. Mesozoic—Cenozoic Climate and Neotectonic Events as Factors in Reconstructing the Thermal History of the Source-Rock Bazhenov Formation; Arctic Region; West Siberia; by the Example of the Yamal Peninsula. Izvestiya; Physics of the Solid Earth; 54(2); 310—329. doi:10.1134/S1069351318020064.

Isaev V. I.; Lobova G. A.; Osipova E. N.; 2014. The oil and gas contents of the Lower Jurassic and Achimovka reservoirs of the Nyurol’ka megadepression. Russian Geology and Geophysics 55; 1418—1428. https://doi.org/10. 1016/j.rgg.2014.11.006.

Isaev V. I.; Volkova N. A.; 1995. The Use of Quadratic Programming for the Solution of an Inverse Heat Flow Problem. Geology of the Pacific Ocean; 12; 155—168.

Kontorovich V. A.; Belyaev S. Yu.; Kontorovich A. E.; Krasavchikov V. O.; Kontorovich A. A.; Suprunenko O. I.; 2001. Tectonic structure and history of evolution of the West Siberian geosyneclise in the Mesozoic and Cenozoic. Russian Geology and Geophysics; 42(11); 1832—1845.

Kontorovich A. E.; Fomin A. N.; Krasavchikov V. O.; Istomin A. V.; 2009. Catagenesis of organic matter at the top and base of the Jurassic complex in the West Siberian megabasin. Russian Geology and Geophysics; 50(11); 917—929. doi: 10.1016/j.rgg.2009.10.001.

Kurchikov A. R.; 2001. The geothermal regime of hydrocarbon pools in West Siberia. Russian Geology and Geophysics; 42(11-12); 678—689.

Kutas R. I.; 2010. Models of geothermal regi-me formation in the Black Sea Basin. Geoinformatics 2010. 9th International Conference on Geoinformatics: Theoretical and Applied Aspects. Kiev; A093.

Kutas R. I.; Poort J.; 2008. Regional and local geothermal conditions in the northern Black Sea. International Journal of Earth Sciences 97(2); 353—363. doi: 10.1007/s00531-007-0216-9.

Lobova G. A.; Isaev V. I.; Fomin A. N.; Stotsky V. V.; 2016. Searches Shale Oil in Western Siberia. International Multidisciplinary Scientific Geo-conference (SGEM 2016): Science and Technologies in Geology; Exploration and Mining: Conference Proceedings; Albena; 28 June—7 July 2016. Sofia: STEF92 Technology Ltd; Vol. 1—3; P. 941—948.

Lobova G.; Stotsky V.; Isaev V.; Starostenko V.; 2017. Shale oil of south segment of Koltogor-Urengoy paleorift. 17th Inernational Multidisciplinary Scientific Geoconference (SGEM 2017): Science and Technologies in Geology; Exploration and Mining. Conference Proceedings: Albena. Sofia: STEF92 Technology Ltd.; Vol. 17; P. 867—874.

Nelskamp S.; Donders T.; van Wess J.-D.; Abbink O.; 2014. Influence of Surface Temperatures on Source Rock Maturity: An Example from the Russian Arctic. ROGTEC; (18); 26—35.

Pyatakov Yu. V.; Isaev V. I.; Starostenko V. I.; 2016. 3D Paleotemperature Modeling of the Geothermal Regime of Sedimentary Basins: Example of the Lunskaya Depression; Sakhalin Island. Russian Journal of Pacific Geology; 10(6); 408—416. doi:10.1134/S18197140160 60051.

Starostenko V. I.; Kutas R. I.; Shuman V. N.; Legostaeva O. V.; 2006. Generalization of the Rayleigh-Tikhonov stationary geothermal problem for a horizontal layer. Izvestiya; Physics of the Solid Earth; 42(12); 1044—1050.