Mantle origin of methane in the Black Sea

Authors

  • O. Rusakov Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • R. Kutas Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147482

Keywords:

Black Sea, gas seeps, mud volcanoes, methane isotopic composition, feeder channels, abiotic methane

Abstract

A new distribution map of gas seeps and mud volcanoes has been compiled of the Black Sea. It has been derived from the published coordinates for ca. 5000 gas seeps and 80 mud volcanoes. An analysis of the stable isotopic composition of methane has been performed for authigenic carbonates and sediments. The δ13C values of carbonates and sediments form 2 distinct tight groups depending of the geological environments. The diagrams of values of δ13C vs. δD and δ13C vs. C1/(C2 + C3) have been applied to assess earlier classifications of methane. The origin of methane from most of samples has turned out to be uncertainly determined. Based on seismic reflection data, the feeder channels of gas releases and mud volcanoes penetrate to the Pre-Mesozoic basement beneath the Polshkov High, Andrusov and Tetyaev Ridges and Sorokin Trough at a depth of up to 12 km. In the Central Black Sea the feeder channel of mud volcano reaches the mantle surface where a depth is 19 km. The highest concentration of gas seeps distribution is observed at the triple junction of the mantle faults in the NW Black Sea. Assessments of different mechanisms have been made for their ability to produce an unprecedented methane concentration in the Black Sea water column. There occurs thermogenic methane in the sediments from gas seepage and mud volcanoes areas. The thermogenic methane results from post genetic alternation of biogenic methane of the Paleogene—Neogene sediments. Biological methane produced from organic matter plays negligibly small role in accumulating the world’s largest quantities of anaerobic methane in the Black Sea. Nonorganic methane is most likely to form the tremendous reservoir of dissolved gas in the Black Sea water column below 150—200 m. The seeming scarcity of abi-otic methane is accounted for its recycling by microbial activity, misclassificating origin and producing by chemical syntheses, with its biological methane δ13C values.

References

Allen, P. A., & Allen, J. R. (2013). Basin analysis: principles and application to petroleum play assessment (3rd ed.). Oxford: Willey-Blackwell.

Amouroux, D., Roberts, G., Rapsomanikis, S., & Andrese, O. (2002). Biogenic Gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-shore and Shelf Waters of the North-western Black Sea. Estuarine, Coastal and Shelf Science, 54(3), 575—587. https://doi.org/10.1006 /ecss.2000.0666.

Bahar, K. l., Iclal, U., Ayse, E., Nilgun, A. Oz., Mustafa, K., & Orhan, I. (2006). Analysis of Methanogenic Archaeal and Sulphate Reducing Bacterial Populations in Deep Sediments of the Black Sea. Geomicrobiology, 23(5), 285—292. doi: 10.1080/01490450600760724.

Bahr, A., Pape, T., Bohrmann, G., Mazzini, A., Haeckel, M., Ritz, A., & Ivanov, M. (2007). Authigenic carbonate precipitates from the NE Black Sea: a mineralogical, geochemical, and lipid biomarker study. International Journal of Earth Sciences, 98(3), 677—695. doi: 10. 1007/s00531-007-0264-1.

Bazhenova, O. K, Fadeeva, N. P, Saint-Germes, M., & Tihomirova, E. E. (2003). Deposition conditions in the Western Para-Tethys Ocean during the Oligocene-Early Miocene (Maykopian time). Moscow Univ Geol Bull, 6, 12—19 (in Russian).

Bernard, B. B, Brooks, J. M., & Sacket, W. M. (1978). Light hydrocarbons in recent Texas continental shelf and slope sediments. Journal of Geophysical Research, 83(C8), 4053—4061. https://doi.org/10.1029/JC083iC08p04 053.

Blinova, V. N., Ivanov, M. K., & Bohrmann, G. (2003). Hydrocarbon gases in deposits from mud volcanoes in the Sorokin Trough, North Eastern Black Sea. Geo-Marine Letters, 23(3-4), 250—257. doi: 10.1007/s00367-003-0148-8.

Bohrmann, G., Ivanov, M., Foucher, J-P., Spiess, V., Bialas, J., Greinert, J., ... Zillmer, M. (2003). Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo-Marine Letters, 23(3-4), 239—249. doi: 10.1007/s00367-003-0157-7.

Bohrmann, G., & Torres, M. E. (2016). Metha-ne in Marine Sediments. In J. Harff, M. Meschede, S. Petersen, & J. Thiede (Eds.), Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series (pp. 495—499). Springer Netherlands. doi: 10.1007/978-94-007-6238-1_190.

Carslaw, H., & Jaeger, J. C. (1959). Conduction of Heat in Solids (2nd ed.). Oxford: Clarenden Press.

Egorov, V. N., Artemov, Y. G., & Gulin, S. B. (2011). Methane seeps in the Black Sea: Environment-forming and ecological role. Sevastopol: EKOSI-Gidrofizika (in Russian).

Etiope, G., & Baciu, G. L. (2009). Terrestrial me-thane seeps and mud volcanoes: A global perspective of gas origin. Marine and Petroleum Geology, 26(3), 333—344. https://doi.org/10. 1016/j.marpetgeo.2008.03.001.

Etiope, G., & Sherwood Lollar, B. (2013). Abio-tic methane on Earth. Reviews of Geophysics, 51, 276—299. doi: 10.1002/rog.2011.

Faber, E., Schmitt, M., & Stahl, W. (1978). Car-bone isotope analysis of head space methane from samples of LEG 42B, sites 379, 380 and 381. DSDP Initial Reports 42, Pt 2, 667—672.

Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of Basin and Petroleum Systems Mode-ling. Dordrecht, Heidelberg, London, New York: Springer. doi 10.1007/978-3-540-72318-9.

Holzner, C. P., McGinnis, D. F., Schubert, C. J., Kipfer, D. M., & Imboden, D. M. (2007). Nob-le gas anomalies related to high-intensity me-thane gas seeps in the Black Sea. Earth and Planetary Science Letters, 265(3-4), 396—409. doi: 10.1016/j.epsl.2007.10.029.

Hunt, J. M., & Whelan, J. K. (1978). Dissolved gases in the Black Sea sediments. Initial Reports of the Deep Sea Drilling Project, 242, Pt 2, 661—665.

Hydrocarbon Potential of the Prykerchenska Area, Ukraine (2007) Black Sea Oil and Gas Summit Istanbul, Turkey 5-6 September 2007. Vanco Energy Company Web: http://http://www.vancoenergy.com. Accessed November 25 2011

Ivanov, M. K., & Lein, A. Yu. (2006). Fractionation of stable isotopes of carbon and sulfur during biological processes in the Black Sea. In L. N. Neretin (Ed.), Past and present water column anoxia (pp. 373—417). Berlin, Heidelberg, Dordrecht, New York: Springer.

Jørgensen, B. B., Weber, A., & Zopfi J. (2001). Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep Sea Research I, 48, 2097—2120.

Kashefi K., & Lovley D. R. (2003). Extending the upper temperature for life. Science, 301(5635), 934. doi: 10.1126/science.1086823.

Knab, N. J., Cragg, B. A., Hornibrook, E. R. C., Holmkvist, L., Borowski, C., Parkes, R. J., & Jørgensen, B. B. (2009). Regulation of anaerobic methane oxidation in sediments of the Black Sea. Biogeosciences, 6, 1505—1518. https: //doi.org/10.5194/bg-6-1505-2009.

Kruglyakova, R. P., Kruglyakova, M. V., & Shev-tsova, N. T. (2009). Geological-geochemical characterization of natural hydrocarbon shows in the Black Sea. Geology and Minerals of the World Ocean, 2, 37—51 (in Russian).

Kutas, R. I., Kobolev, V. P., & Tsvyashchnko, V. A. (1998). Heat flow and geothermal model of the Black Sea depression. Tectonophysics, 291(1-4), 91—100. doi: 10.1016/S0040-1951(98) 00033-X.

Kutas, R. I., Paliy, S. I., & Rusakov, O. M. (2004). Deep faults, heat flow and gas leakage in the northern Black Sea. Geo-Marine Letters, 24(3), 163—168. doi: 10.1007/s00367-004-0172-3.

Lein, A. Yu., & Ivanov, M. K. (2005). The world’s largest pool of methane. Priroda, (2), 19—26 (in Russian).

Mazzini, A., Ivanov, M. K., Nermoen, A., Bahr, A., Bohrmann, G., Svensen, H., & Planke, S. (2008). Complex plumbing systems in the near subsurface: Geometries of authigenic carbonates from Dolgovskoy Mound (Black Sea) const-rained by analogue experiments. Marine and Petroleum Geology, 25(6), 457—472. doi: 10. 1016/j.marpetgeo.2007.10.002.

Mazzini, A., Ivanov, M. K., Parnel, J., Stadnitskaia, A., Cronin, B. T., Poludetkina, ... van Weering, T. C. E. (2004). Methane-related authigenic carbonates from the Black Sea: geo-chemical characterization and relation to seeping fluids. Marine Geology, 212, 153—168. doi: 10.1016/j.margeo.2004.08.001.

Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., ... Gulin, M. B. (2002). Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297(5583), 1013—1015. doi: 10.1126/science.1072502.

Nikishin, A. M., Okay, A., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N., & Petrov, E. (2014). The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Marine and Petroleum Geology, 59, 656—670. http://dx. doi.org/10.1016/j.marpetgeo.2014.08.018.

Pape, T., Bahr, A., Rethemeyer, J., Kessler, J. D., Sahling, H., Hinrichs, K-U., ... Bohrmann, G. (2010). Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in de-posits of a high-flux seepage site. Chemical Geology, 269(3-4), 350—363. doi: 10.1016/j. chemgeo.2009.10.009.

Peckmann, J., Reimer, A., Luth, U., Hansen, B. T., Heinicke, C., Hoefs, J., & Reitner, J. (2001). Methane-derived carbonate and authigenic pyrite from the northwestern Black Sea. Marine Geology, 177(1-2), 129—150. doi: 10.1016 /S0025-3227(01)00128-1.

Römer, M., Sahlin, H., Pape, T., Bahr, A., Fese-ker, T., Wintersteller, P., & Bohrmann, G. (2012). Geological control and magnitude of methane ebullition from a high-flux seep in the Black Sea-the Kerch seep area. Marine Geology, 319-322, 57—74. https://doi.org/10.1016/j.mar geo.2012.07.005.

Reeburgh, W. S., Ward, B. B., Whalen, S. C., Sand-back, K. A., Kilpatrick, K. A., & Kerkhof, L. J. (1991). Black Sea methane geochemistry. Deep-Sea Research, 38(2), S1189—S1210.

Reitz, A., Pape, T., Haeckel, M., Schmidt, M., Berner, U., Scholz, F., … Wallmann, K. (2011). Sources of fluids and gases expelled at cold seeps offshore Georgia, eastern Black Sea. Geochimica et Cosmochimica Acta, 75:3250—3268. https://doi.org/10.1016/j.gca.2011.03.018.

Rusakov, O. M., Pashkevich, I. K. (2017). The decisive role of the crystalline crust faults in the Black Sea opening. Geofizicheskiy zhurnal, 39(1), 3—16.

Rusanov, I. I., Lein, A. Yu., Pimenov, N. V., Yusupov, S. K., & Ivanov, M. V. (2002). The Bio-geochemical Cycle of Methane on the Northwestern Shelf of the Black Sea. Microbiology, 71(4), 479—487. doi:10.1023/A:10198620 14508.

Sahling, H., Bohrmann, G., Artemov, Yu. G., Bahr, A., Brüning, M., Klapp, S. A., ... Wallmann, K. (2009). Vodyanitskii mud volcano, Sorokin trough, Black Sea: Geological characterization and quantification of gas bubble streams. Marine and Petroleum Geology, 26(9), 1799—1811. doi: 10.1016/j.marpetgeo. 2009.01.010.

Schmale, O., Haeckel, M., & McGinnis, D. F. (2011). Response of the Black Sea methane budget to massive short-term submarine inputs of methane. Biogeosciences, 8, 911—918. https://doi.org/10.5194/bg-8-911-2011.

Scott, S. L., Shillington, D. J., Minshull, T. A., Edwards, R. A., Brown, P. J., & White, N. J. (2009). Wide-angle seismic data reveal extensive overpressures in the Eastern Black Sea Basin. Geophysical Journal International, 178(2), 1145—1163. https://doi.org/10.1111/j.1365-246X.2009.04215.x.

Şen, Ş. (2013). New evidences for the formation of and for petroleum exploration in the fold-thrust zones of the central Black Sea Basin of Turkey. AAPG Bulletin, 3, 465—485. doi: 10.1306/09041212005.

Shnuykov, E. F., Kobolev, V. P., & Pasynkov, A. A. (2013). Gas volcanism of the Black Sea. Kiev: Logos (in Russian).

Shnuykov, E. F., Stupina, L. V., Paryshev, A. A., Netrebskaia, E. Ya., Maslakov, N. A., Inozemtsev, Yu. I., ... Gusakov, Y. N. (2015). Mud volcanoes of the Black Sea (catalog). Kiev: Logos (in Russian).

Stadnitskaia, A., Ivanov, M. K., Poludetkina, E. N., Kreulen, R., & van Weering, T. C. E. (2007). Sources of hydrocarbon gases in mud volcanoes from the Sorokin Trough, NE Black Sea, based on molecular and carbon isotopic compositions. Marine and Petroleum Geology, 25(10), 1040—1057. doi: 10.1016/j.marpetgeo. 2007.08.001.

Starostenko, V. I., Rusakov, O. M., Shnyukov, E. F., Kobolev, V. P., & Kutas, R. I. (2010). Methane in the northern Black Sea: characterization of its geomorphological and geological environments. In M. Sosson, N. Kaymakci, R. Stephenson, F. Bergerat, & V. Starostenko (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform (Vol. 340, pp. 57—75). Geol. Soc. London, Special Publ.

Starostenko, V. I., Makarenko, I. B., Pashkevich, I. K., Rusakov, O. M., Kutas, R. I., Legostaeva, O. V. (2010b). Geophysical heterogeneities of the lithosphere of the Black Sea megadepression. Geofizicheskiy zhurnal, 32(5), 3—20 (in Russian).

Starostenko, V. I., Dolmaz, M. N., Kutas, R. I., Rusakov, O. M, Oksum, E., Hisarli, Z. M., ... Legostaeva, O. V. (2014). Thermal structure of the crust in the Black Sea: comparative analysis of magnetic and heat flow data. Marine Geophysical Research, 35(4), 345—359. doi: 10.1007/s11001-014-9224-x.

Starostenko, V. I., Rusakov, O. M., Pashkevich, I. K., Kutas, R. I., Makarenko, I. B., Legostaeva, O. V., … Savchenko A. S. (2015). Heterogeneous structure of the lithosphere in the Black Sea from a multidisciplinary analysis of geophysical fields. Geofizicheskiy zhurnal, 37(2), 3—28. doi: https://doi.org/10.24028/gzh.0203-3100.v37i2.2015.111298.

Stolper, D. A. , Lawson, M., Davis, C. L., Ferre-ira, A. A., Santos, Neto E. V., Ellis, G. S., … Eiler, J. M. (2014). Formation temperatures of thermogenic and biogenic methane. Science, 344(6191), 1500—1503. doi: 10.1126/science.1254509.

Tari, G., Davies, J., Dellmour, R., Larrat, E., Novotny, B., & Kozhuharov, E. (2009). Play types and hydrocarbon potential of the deepwater Black Sea, NE Bulgaria. TLI, 9, 1076—1081.

Tari, G., Menlikli, C., & Derman, S. (2011). Deepwater Play Types of the Black Sea: A Brief overview. Search and Discovery Article #10310 (2011). Posted March 28, 2011.

Timmers, P. H. A., Welte, C. U., Koehorst, J. J., Plugge, C. M., Jetten, M. S. M., & Stams, A. J. M. (2017). Reverse Methanogenesis and Respiration in Methanotrophic Archaea. Hindawi Archaea 2017 Article ID 1654237. doi.org/10.1155 /2017/1654237.

Treudel, T., Orphan, V., Knittel, K., Gieskel, A., House, C. H., & Boetus, A. (2007). Consumption of Methane and CO2 by Methanotro-phic Microbial Mats from Gas Seeps of the Anoxic Black Sea. Applied and Environmental Microbiology, 73(7), 2271—2283. doi: 10. 1128/AEM.02685-06.

Wagner-Friedrichs, M. (2007). Seafloor seepage in the Black Sea: Mud volcanoes, seeps and diapiric structures imaged by acoustic method. PhD dissertation. University of Bremen.

Waples, D. W. (1979). Simple method for oil source bed evaluation. AAPG Bulletin, 63(2), 239—245.

Waples, D. W. (1980). Time and Temperature in Petroleum Formation: Application of Lopatin’s Method to Petroleum Exploration. AAPG Bulletin, 64(6), 916—926.

Whiticar, M. J., (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1-3), 291—314. doi: 10.1016/S0009-2541(99)000 92-3.

Downloads

Published

2018-11-26

How to Cite

Rusakov, O., & Kutas, R. (2018). Mantle origin of methane in the Black Sea. Geofizicheskiy Zhurnal, 40(5), 191–207. https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147482

Issue

Section

Articles