Modern seismic technologies for studying fractured carbonate reservoirs of oil and gas

Authors

  • Yu.K. Tyapkin LLC "Yug-Neftegazgeologia", Ukraine
  • I.Yu. Khromova Individual entrepreneur, Russian Federation
  • N.Ya. Marmalevskyi Tetrale Group Inc., Ukraine
  • O.M. Tiapkina Private higher educational institution "Institute Tutkovsky», Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v42i4.2020.210672

Keywords:

carbonate reservoirs, fractured zones, azimuthal anisotropy, seismic post-stack attributes, simultaneous seismic inversion, duplex wave migration

Abstract

This article is a review of modern seismic technologies used in the study of carbonate reservoirs of oil and gas. Special attention is paid to areas of high fracture density, since the overwhelming majority of producing wells are associated with them. After analyzing the spatial behavior of natural fractures in carbonate rocks, we consider direct fracture indicators. They exploit azimuthal anisotropy of the amplitudes and velocities of both pressure and shear waves that is caused by an idealized model of fracture sets. Such a model assumes the presence of a fairly wide zone of flat, parallel and equidistant open fractures. Then, indirect fracture indicators, which are less demanding on the regularity of fracture behavior in space, are briefly analyzed. These are seismic post-stack attributes, such as dip angle, image coherence, curvature and other characteristics of reflecting horizons, as well as increased values of inelastic (in particular, azimuth-dependent) absorption and scattering of seismic waves. More attention is paid to simultaneous inversion of pre-stack seismic data, which allows calculating the ratio of the velocities of pressure waves and shear waves. Judging by numerous literary sources, relatively low values of this parameter serve as an indicator of the presence of fractures in carbonate rocks. We show that a set of parallel macrofractures can significantly affect the seismic estimates of this parameter and in no way affect its estimates from well log data. The impact of this mechanism is shown on the data from an area in the southeastern part of the West Siberian platform. Finally, the technology of imaging subvertical fractured zones (fractured corridors) using migration of duplex waves is considered. This type of waves has advantages over conventional reflected waves when visualizing subvertical objects. The effectiveness of this technology is demonstrated on seismic data from two areas in the Timan-Pechora oil-and-gas province.

References

Gogonenkov, G.N., & Pleshkevich, A.L. (2012). Technology of azimuthal amplitude analysis of land 3-D seismic data in the search for fractured zones. Geofizika, (Special issue), 18—27 (in Russian).

Gornyak, Z.V., Kostyukevych, A.S., Link, B., Marmalevskiy, N.Ya., Mershchiy, V.V., & Roganov, Yu.V. (2008). Study of vertical heterogeneities using migration of duplex waves. Tekhnologii seismorazvedki, 5(1), 3—14 (in Russian).

Graf, S.Yu. (2012). Kinematic analysis of seismic velocity anisotropy in transversely isotropic media. Geofizika, (Special issue), 28—37 (in Russian).

Dugarov, G.A., Obolentseva, I.R., & Chichinina, T.I. (2011). Analysis of anisotropy of velocities and absorption of seismic waves in a medium with one set of parallel fractures. Tekhnologii seismorazvedki, 8 (3), 29—41 (in Russian).

Isenov, S., Kuznetsova, O., Karaulov, A., & Pelman, D. (2014). Technologies: multifocusing and diffraction multifocusing — new perspectives for a detailed study of pre-salt carbonate reservoirs in the Caspian basin. Nefteservis, (2), 32—34 (in Russian).

Stone Forest in Madagascar. (2020). Retrieved from https://bigpicture.ru/?p=296108 (in Russian).

Kozlov, E.A. (2006). Medium Models in Prospecting Seismology. Tver: GERS Publ., 480 p. (in Russian).

Landa, E. (2011). Fractured zone detection by diffraction multifocusing. Oil&Gas Journal Russia, (11), 48—51 (in Russian).

Levyant, V.B., Khromova, I.Yu., Kozlov, E.A., Kerusov, I.N., Kashcheev, D.E., Kolesov, V.V., & Marmalevskiy N.Ya. (2010). Methodical recommendations on the use of seismic data for the calculation of hydrocarbon reserves in conditions of carbonate rocks with porosity of a fracture-cavern type. Moscow: Central Geophysical Expedition, 250 p. (in Russian).

Marmalevskiy, N.Ya., Khromova, I.Yu., Shafikov, R.R., Gornyak, Z.V., Dubrova, G.B., & Link, B. (2011). Examples of the use of duplex wave migration to study fractured zones. Zbirnyk naukovykh prats UkrDGRI, (4), 162—170 (in Russian).

Mendriy, I.V. & Tyapkin, Yu.K. (2014). Seismic coherence: an updated estimation method and use for studies of fractured zones in the Donets Basin. Tekhnologii seismorazvedki, 11(1), 84—97 (in Russian).

Pozdnyakov, V.A., Safonov, D.V., & Shilikov, V.V. (2009). Predicting fractured zones within the Yurubcheno-Tokhomskaya zone with the use of 3D seismic data. Tekhnologii seismorazvedki, 6(1), 85—90 (in Russian).

Tiapkina, O.M., & Tyapkin, Yu.K. (2019). Simultaneous seismic inversion to identify prospective areas in carbonate rocks of the southeastern part of the West Siberian Platform. Geofizicheskiy zhurnal, 41(1), 76—94. doi: 10.24028/gzh.0203-3100.v41i1.2019.158865 (in Russian).

Tyapkin, Yu.K. Mendriy, I.V., Shchegolikhin, O.Yu., & Tiapkina, O.M. (2018). Seismic coherence in the presence of signal time-delay fluctuations. Geofizicheskiy zhurnal, 40(2), 30—47. doi: 10.24028/gzh.0203-3100.v40i2.2018.128878 (in Russian).

Fedotov, S.L., Babenko, I.A., Nekrasova, T.V., Zhemchugov, A.K., Afanasyeva, J.O., Vekshin, R.V., & Fedorov, A.I. (2009). Using simulation geostatistical inversion to create a model of complex carbonate reservoir on the Timan-Pechora basin oil field case study. International Scientific and Practical Conference Geomodel-2009, Extended Abstracts. doi: 10.3997/2214-4609.20147267 (in Russian).

Khromova, I.Yu. (2008). Duplex wave migration for mapping of fractured zones of tectonic genesis. Geologiya nefti i gaza, (3), 37—47 (in Russian).

Khromova, I.Yu. (2010). Practical comparison of fracture prediction methods from seismic data. Tekhnologii seismorazvedki, 7(2), 62—69 (in Russian).

Arndt, M. (2011). En echelon crack seal vein pavement. Retrieved from https://cdn.imaggeo.egu.eu/media/thumbs/previews/2011/03/11/836.jpg.280x280_q85_autocrop_crop-smart.webp.

Bakulin, A., Grechka, V., & Tsvankin, I. (2000). Estimation of fracture parameters from reflection seismic data — part I: НТІ model due to a single fracture set. Geophysics, 65(6), 1788—1802. doi: 10.1190/1.1444863.

Berkovitch, A., Belfer, I., Hassin, Y., & Landa, E. (2009). Diffraction imaging by multifocusing. Geophysics, 74(6), WCA75—WCA81. doi: 10.1190/1.3198210.

Cao, Z., Li, X.-Y., Liu, J., Qin, X., Sun, S., Li, Z., & Cao, Z. (2018). Carbonate fractured gas reservoir prediction based on P-wave azimuthal anisotropy and dispersion. Journal of Geophysics and Engineering, 15(5), 2139—2149. doi: 10.1088/1742-2140/aabe58.

Carbonate Reservoirs. (2020). Retrieved from https://www.slb.com/technical-challenges/carbonates.

Chopra, S., & Marfurt, K.J. (2010). Integration of coherence and volumetric curvature images. The Leading Edge, 29(9), 1092—1107. doi: 10.1190/1.3485770.

Gray, D., Roberts, G., & Head, K. (2002). Recent advances in determination of fracture strike and crack density from P-wave seismic data. The Leading Edge, 21(3), 280—285. doi: 10.1190/1.1463778.

Hall, S.A., & Kendall, J.-M. (2003). Fracture characterization at Valhall: Application of P-wave amplitude variation with offset and azimuth (AVOA) analysis to a 3D ocean-bottom data set. Geophysics, 68(4), 1150—1160. doi: 10.1190/1.15988107.

Hampson, D.P., Russell, B.H., & Bankhead, B. (2005). Simultaneous inversion of pre-stack seismic data. 75th SEG Annual Meeting, Expanded Abstracts, 1633—1637. doi: 10.1190/1.2148008.

Hart, B.S., Pearson, R., & Rowling, G.C. (2002). 3-D seismic horizon-based approaches to fracture-swarm sweet spot definition in tight-gas reservoirs. The Leading Edge, 21(1), 28—35. doi: 10.1190/1.1445844.

Hunt, L., Reynolds, S., Brown, T., Hadley, S., Downton, J., & Chopra, S. (2011). Quantitative estimates of fracture density variations: further perspectives. CSEG Recorder, 36(1), 9—18.

Hunt, L., Reynolds, S., Brown, T., Hadley, S., Downton, J., & Chopra, S. (2010). Quantitative estimate of fracture density variations in the Nordegg with azimuthal AVO and curvature: A case study. The Leading Edge, 29(9), 1122—1137. doi: 10.1190/1.3485773.

Khromova, I., Link, B., & Marmalevskyi, N. (2011). Comparison of seismic-based methods for fracture permeability prediction. First Break, 29(1), 37—44. doi: 10.3997/1365-2397.2011001.

Konyushenko, А., Shumilyak, V., Solgan, V., Inozemtsev, A., Solovyev, V., & Koren, Z. (2014). Using full-azimuth imaging and inversion in a Belarus salt dome tectonic regime to analyze fracturing in Upper Devonian intersalt and subsalt carbonate reservoirs. First Break, 32(9), 81—88.

Laubach, S.E., Marrett, R.A., Olson, J.E., & Scott, A.R. (1998). Characteristics and origins of coal cleat: A review. International Journal of Coal Geology, 35(1-4), 175—207. doi: 10.1016/S0166-5162(97)00012-8.

Li, Y., Dawton, J., & Goodway, B. (2003). Recent applications of AVO to carbonate reservoirs in the Western Canadian Sedimentary Basin. The Leading Edge, 22(7), 670—674. doi: 10.1190/1.1599694.

Loinger, E., Gaiser, J.E., Lucini, A., Prestori, M., & Walters, R. (2002). 3D/4C Emilio: azimuth processing for anisotropy analysis. 64th EAGE Conference, Extended Abstracts, Paper F-23. doi: 10.3997/2214-4609-pdb.5.F023.

Lorenz, J.C., Warpinski, N.R., & Teufel, L.W. (1996). Natural fracture characteristics and effects. The Leading Edge, 15(8), 909—911. doi: 10.1190/1.1437388.

Marmalevskyi, N., Gornyak, Z., Kostyukevych, A., Mershchiy, V., & Roganov, Y. (2006). Method, system and apparatus for interpreting seismic data using duplex waves. Patent US 7, 110, 323 B2. 2006.

Marmalevskyi, N., Kostyukevych, A., & Dubrova, G. (2013). Duplex wave migration and corner reflector approximation. 75th EAGE Conference, Extended Abstracts, Paper Th PO2 14. doi: 10.3997/2214-4609.20130243.

Marrett, R., Laubach, S. E., & Olson, J.E. (2007). Anisotropy and beyond: Geologic perspectives on geophysical prospecting for natural fractures. The Leading Edge, 26(9), 1106—1111. doi: 10.1190/1.2780778.

Marrett, R., Ortega, O.J., & Kelsey, C.M. (1999). Extent of power-law scaling for natural fractures in rock. Geology, 27(9), 799—802. doi: 10.1130/0091-7613(1999)027<0799:EOPLSF>2.3.CO;2.

McQuillan, H. (1985). Fracture-controlled production from the Oligo-Miocene Asmari Formation in Gachsaran and Bibi Hakimeh fields, Southwest Iran. In: P.O. Roehl, & P.W. Choquette, (Eds.), Carbonate Platform Reservoirs (pp. 513—523). New York: Springer Verlag.

Mueller, M. C. (1992). Using shear waves to predict lateral variability in vertical fracture intensity. The Leading Edge, 11(2), 29—35. doi: 10.1190/1.1436870.

Narhari, S.R., Al-Qadeeri, B., Dashti, Q., Silva, J., Dasgupta, S., Hannan, A., Walz, M., Lu, L., Wagner, C., & Sayers, C.M. (2015). Application of prestack orthotropic AVAz inversion for fracture characterization of a deep carbonate reservoir in nothern Kuwait. The Leading Edge, 34(12), 1488—1493. doi: 10.1190/tle34121488.1.

Parsons, R.W. (1966). Permeability of idealized fractured rock. SPE Journal, 6 (2), 126—136. doi: 10.2118/1289-PA.

Roberts, A. (2001). Curvature attributes and their application to 3D interpreted horizons. First Break, 19(2), 85—100. doi: 10.1046/j.0263-5046.2001.00142.x.

Russell, R., Hampson, D., & Logel, J. (2010). Applying the phase congruency algorithm to seismic data slices: a carbonate case study. First Break, 28(10), 83—90.

Sayers, C. M. (2009). Seismic characterization of reservoirs containing multiple fracture sets. Geophysical Prospecting, 57(1), 187—192. doi: 10.1111/j.1365-2478.2008.00766.x.

Singh, S.K., Abu-Habbiel, H., Khan, B., Akbar, M., Etchecopar, A., & Montagon, B. (2008). Mapping fracture corridors in naturally fractured reservoirs: an example from Middle East carbonates. First Break, 26(5), 109—113.

Skirius, C., Nissen, S., Haskell, N., Marfurt, K., Hadley, S., Ternes, D., Michel, K., Reglar, I., D’Amico, D., Deliencourt, F., Romero, T., D’Angelo, R., & Brown, B. (1999). 3D seismic attributes applied to carbonates. The Leading Edge, 18(3), 384—393. doi: 10.1190/1.1438303.

Sondergeld, C.H., & Rai, C.S. (1992). Laboratory observations of shear-wave propagation in anisotropic media. The Leading Edge, 11(2), 38—43. doi: 10.1190/1.1436870.

Sturzu, I., Popovici, A.M., Moser, T.J., & Sudhakar, S. (2015). Diffraction imaging in fractured carbonates and unconventional shales. Interpretation, 3(1), SF69—SF79. doi: 10.1190/INT-2014-0080.1.

Todorovic-Marinic, D., Mattocks, B., Bale, R., Gray, D., & Dewar, J. (2005). More powerful fracture detection: Integrating P-wave, converted-wave, FMI and everything. 67th EAGE Conference, Extended Abstracts, Paper E038. doi: 10.3997/2214-4609-pdb.1.E038.

Toublanc, A., Clausen, C.K., & Hagen, N.E. (2004). Associating different curvatures with fracture distribution characterization. 66th EAGE Conference, Extended Abstracts, Paper C036. doi: 10.3997/2214-4609-pdb.3.C036.

Valle-Garsia, R., & Ramirez-Cruz, L. (2002). Spectral attributes for attenuation analysis in a fractured carbonate reservoir. The Leading Edge, 21(10), 1038—1041. doi: 10.1190/1.1518443.

Wang, Y., Li, X., Qian, K., & Li, X.-Y. (2013). P-wave anisotropic attenuation attribute: a potential tool to predict meso-scale fractures. 83rd SEG Annual Meeting, Expanded Abstracts, 330—334. doi: 10.1190/segam2013-0959.1.

Xu, S., & King, M.S. (1990). Attenuation of elastic waves in a cracked solid. Geophysical Journal International, 101 (1), 169—180. doi: 10.1111/j.1365-246X.1990.tb00766.x.

Published

2020-09-18

How to Cite

Tyapkin, Y., Khromova, I., Marmalevskyi, N., & Tiapkina, O. (2020). Modern seismic technologies for studying fractured carbonate reservoirs of oil and gas. Geofizicheskiy Zhurnal, 42(4), 39–71. https://doi.org/10.24028/gzh.0203-3100.v42i4.2020.210672

Issue

Section

Articles