Coronavirus scent

Yakov Khazan


It is shown that epidemic dynamics and total number of people with a viral disease in a closed community critically depend on the duration of the period of virus contagiousness. The time that an infected person remains infectious is limited either by his/her isolation or by a natural decrease in virus activity. From laboratory data on changes in virus COVID-19 activity over time and on the basis of studying the epidemic dynamics in various communities, it follows that if the isolation of an infected person is not effectively used to combat the epidemic, then the individual, on average, remains contagious for 9—10 days after being infected. Modeling shows that in this case approximately 15 % of the closed community population will be finally infected (including asymptomatic cases). Since only about 20 % of those infected go to the doctor and are registered in the statistics, it should be expected that the number of registered cases would be about 3 % of the population. Currently, only Israel has reached this threshold.


COVID-19; contagiousness period; epidemic dynamics


Allen, L.J.S. (2008). An Introduction to Stochastic Epidemic Models. In F. Brauer, P. van den Driessche, J. Wu (Eds.), Mathematical Epidemiology. Lecture Notes in Mathematics (Vol. 1945, pp. 81—130). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-78911-6_3.

Brauer, F. (2008). Compartmental models in epidemiology. In F. Brauer, P. van den Driessche & J. Wu (Eds.), Mathematical Epidemiology. Lecture Notes in Mathematics (Vol. 1945, pp. 19—79). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-78911-6_2.

Buchanan, M. (2020). The limits of a model. Nature Physics, 16, 605. doi: 10.1038/s41567-020-0934-5.

Cobey, S. (2020). Modeling infectious disease dynamics. Science, 368, 713—714. doi: 10.1126/science.abb5659.

Dietz, K., & Schenzle, D. (1985). Mathematical Models for Infectious Disease Statistics. In A.C. Atkinson & S.E. Fienberg (Eds.), A Celebration of Statistics (pp. 167—204). New York: Springer-Verlag. doi:10.1007/978-1-4613-8560-8_8.

Einstein, A. (1934). On the Method of Theoretical Physics. Herbert Spencer Lecture, Oxford (10 June 1933). Philosophy of Science, 1(2), 163—169.

Kermack, W.O., & McKendrick, A.G. (1927). Contributions to the mathematical theory of epidemics — I. Proc. Royal Soc., 115A, 700—721. doi:10.1016/S0092-8240(05)80040-0.

Lauer, S.A., Kyra, H., Bi, G., Jones, F.K., Zheng, Q., Meredith, H.R., Azman, A.S., Reich, N.R., & Les¬sler, J. (2020). The incubation period of co¬ronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, 172(9), 577—582. doi: 10.7326/M20-0504.

Mallapaty, S. (2020). How deadly is the coronavirus? Nature, 582, 467—468. doi: 10.1038/d41586-020-01738-2.

Mizumoto, K., Kagaya, K., Zarebski, A., & Chowell, G. (2020). Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. EuroSurveillance, 25(10), 2000180. doi: 10.2807/1560-7917.ES.2020.25.10.2000180.

Neher, R.A., Dyrdak, R., Druelle, V., Hodcroft, E.B., & Albert, J. (2020). Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Medical Weekly, 150, w20224. doi:10.4414/smw.2020.20224.

Patel, M., Charlett, A., Lopez, B.J., Saliba, V., Ellis, J., Ladhani, S., Zambon, M., & Gopal, R. (2020). Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. EuroSurveillance, 25(32), 2001483. doi: 10.2807/1560-7917.ES.2020.25.32.2001483.

Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C. et al. (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. The New England Journal of Medicine, 382, 970—971. doi: 10.1056/NEJMc2001468.

Russell, T.W, Hellewell, J., Jarvis, C.I., van Zandvoort, K., Abbott, S., Ratnayake, R., CMMID COVID-19 working group, Flasche, S., Eggo, R.M., Edmunds, W.J., & Kucharski, A.J. (2020). Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess Cruise ship, February 2020. EuroSurveillance, 25(12), 2000256. doi:10.2807/1560-7917.ES.2020.25.12.2000256.

Sanche, S., Lin, Y., Xu, C., Romero-Severson, E., Hengartner, N., & Ke, R. (2020). High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases, 26(7), 1470—1477.

Streeck, H., Schulte, B., Kuemmerer, B., Richter, E., Hoeller, N., Fuhrmann, C., Bartok, E., Dolscheid, R., Berger, M., Wessendorf, L., Eschbach-Bludau, M., Kellings, A., Schwaiger, A., Martin Coenen, C., Hoffmann, P., Noethen, M., Eis-Huebinger, A-M., Exner, M., Schmithausen, R., Schmid, M., & Hartmann, G. (2020). Infection fatality rate of SARS-CoV-2 infection in a German community with a super-spreading event. medRxiv. doi: 10.1101/2020.05.04.20090076.

Thompson, E.L., & Smith, L.A. (2019). Escape from model-land. Economics: The Open-Access, Open-Assessment E-Journal, 13, 1—15. doi: 10.5018/economics-ejournal.ja.2019-40.

Van den Driessche, P., & Watmough, J. (2008) Further Notes on the Basic Reproduction Number. In F. Brauer, P. van den Driessche, J. Wu (Eds.), Mathematical Epidemiology. Lecture Notes in Mathematics (Vol. 1945, pp. 159—178). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-78911-6_6.

Viglione, G. (2020). How many people has the coronavirus killed? Nature, 585, 22—24. doi: 10.1038/d41586-020-02497-w.

Wu, J. (2008). Spatial Structure: Partial Differential Equations Models. In F. Brauer, P. van den Driessche, J. Wu (Eds.), Mathematical Epidemiology. Lecture Notes in Mathematics (Vol. 1945, pp. 191—203). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-78911-6_8.

Wu, J., McCann, A., Katz, J., Peltier, E. & Deep, K.S. (2020, October 5). 338,000 Missing Deaths: Tracking the True Toll of the Coronavirus Outbreak. The New York Times. Retrieved from


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License
Geofizicheskiy Zhurnal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Flag Counter