Paleomagnetic and rock magnetic study of Lower Devonian red beds from Podolia: remagnetization problems

Authors

  • V. Bakhmutov S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • M. Yelenskaya Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • M. Kadzyalko-Hofmokl Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • E. Polyachenko S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • L. Konstantinenko Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • P. Zhilkovsky Geological Faculty of the University of Warsaw, Poland

DOI:

https://doi.org/10.24028/gzh.0203-3100.v37i1.2015.111326

Keywords:

devonian, southwestern Ukraine, red beds, paleomagnetic data, magnetic properties

Abstract

Results of paleomagnetic studies of red bed Early Devonian deposits of Podolia, which make the Dniester series (southwestern Ukraine, the Dniester basin) have been given. As a result two components of natural remanent magnetization have been subdivided in addition to viscous one. The first one has got south-southwestern declination and negative inclination, it is identified in almost all samples within the limits of deblocking temperatures from 150—200°С to 530—630°С. Its corresponding paleomagnetic pole (47°S, 351,5°E) is close to the Permian fragment of APWP for the Baltic/Stabile Europe. Its bearers are newly-formed magnetic minerals (secondary authigenous hematite), responsible for production of “late” chemical magnetization. The second component is subdivided in some samples within the limits from 590—610°С to 680—690°С, it has got southwestern declination and positive inclination. Its corresponding paleomagnetic pole (2.3°S, 338.4°E) is drawn towards Early Devonian fragment of APWP This component is caused by presence of detritic grains of hematite. There are solid grounds for consideration of this magnetization to be primary one, which reflects the direction of the Devonian field. New results are in good agreement with paleomagnetic directions obtained earlier in this area for red beds and grey beds of Early Devonian.

References

Bakhmutov V., Teisseyre-Jeleńska M., Kądziaіko-Hofmokl M., Konstantinienko L., Poliachenko E., 2012. Paleomagnetic studies of Low Devonian grey-colored deposits of Podolia. Geofizicheskiy zhurnal 34 (6), 57—67 (in Russian).

Gordienko V. V., Gordienko I. V., Zavgorodnyaya O. V., Kovachikova S., Logvinov I. M., Tarasov V. N., Usenko O. V., 2012. Volyn-Podolsky plate: geophysics, deep-seated processes. Kiev: Naukova Dumka, 198 p. (in Russian).

Lubnina N. V., 2009. East European Craton from Neoarchean to Paleozoic paleomagnetic data: Dr. geol and min. sci. diss. Abstract. Moscow: MSU Publ., 40 p. (in Russian).

Lubnina N. V., Iosifidi A. G., Khramov A. N., Popov V. V., Lewandowski M., 2007. Paleomagnetism of the Silurian and Devonian sedimentary formations of Podolia. In: Paleomagnetism of the Northern Eurasia sedimentary basins. St-Petersburg: VNIGRI Publ., 105—125 (in Russian).

Nikiforova O.I., Predtechenskiy N.N., 1968. Guide of geological excursion of the Silurian and Lower Devonian sediments from Podilia. Leningrad: Nauka, 61 p. (in Russian).

Poliachenko I., Bakhmutov V., Konstantinenko L., Teisseyre-Jeleńska M., Kądziaіko-Hofmokl M., Scarboviychuk T., Yakukhno V., 2014. New results of paleomagnetic studies of red-colored Silurian of Podolia. Geofizicheskiy zhurnal 36 (3), 34—47 (in Russian).

Tsegelnyuk P. D., Gritsenko V. P., Konstantinienko L. I., Ishchenko A. A., Abushik A. F., Bogoyavlenskaya O. V., Drygant D. M., Zaika-Novatsky V. S., Kadlets N. M., Kiselev G. N., Sytova V. A., 1983. The Silurian of Podolia, the guide to the excursion. Kiev: Naukova Dumka, 224 p. (in Russian).

Butler R. F., 1992. Paleomagnetism: Magnetic domains to geologic terranes. Boston: Blackwell Sci. Publ., 319 p.

Chadima M., Hrouda F., 2006. Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Travaux Geophysiques XXVII, 20—21.

Day R., Fuller M., Schmidt V. A., 1977. Hysteresis properties of titanomagnetites: Grain size and compositional dependence. Phys. Earth Planet. Int. 13, 260—267.

Dekkers M. J., Linssen J. H., 1991. Grain size separation of hematite in the  5 micrometer range for rock magnetic investigation. Geophys. J. Int. 104, 423—427.

Dunlop D. J., 2002. Theory and application of the Day plot (Mrs / Ms versus Hcr / Hc) 2. Application to data for rocks, sediments and soils. J. Geophys. Res. 107 (B3), 1582. doi:10.1029/2001JB000487.

Gradstein F. M., Ogg J. G., Schmitz M. D., Ogg G. M. (coordinators), 2012. The Geological Time Scale 2012. Boston, USA: Elsevier 2, 1176 p.

Jackson M., Swanson-Hysell N. L., 2012. Rock magnetism of remagnetized carbonate rocks: another look. Geol. Soc. London, Spec. Publ. 371. doi:10.1144/SP371.3.

Jeleńska M., Bakhmutov V., Konstantinenko L., 2005. Paleomagnetic and rock magnetic data from the Silurian succession of the Dniester basin, Ukraine. Phys. Earth Planet. Int. 149, 307—320. doi:10.1016/j.pepi.2004.10.005.

Jeleńska M., Kądziaіko-Hofmokl M., Bakhmutov V., Poliachenko I., Ziуіkowski P., 2010. Identification of magnetic carriers of original and secondary NRM components recorded in Devonian sediments from Podolia, SW Ukraine. Geofizicheskiy zhurnal 32(4), 59—60.

Jelinek V., 1977. The statistical theory of measuring Anisotropy of Magnetic Susceptibility and its application. Geophysica Brno 1, 5—88.

Kirschvink J. L., 1980. The least squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Roy. Astron. Soc. 62, 699—718. doi:10.1111/j.1365246X.1980. tb02601.x.

Kodama K. P., 2012. Paleomagnetism of Sedimentary Rocks: Process and Interpretation. Wiley-Blackwell, John Wiley & Sons, Ltd. Publ., 157 р.

Kruiver P. P., Dekkers M. J., Heslop D., 2001. Quantification of magnetic coercivity components by analysis of acquisition curves of isothermal remanent magnetization. Earth Planet. Sci. Lett. 189, 269—276.

Lewandowski M., Werner T., Nowożyński K., 1997. PDA — a package of FORTRAN programs for paleomagnetic data analysis. Inst. Geophys. Pol. Acad. Sci. Manuscript, 1—17.

Lowrie W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett. 17, 159—162.

McCabe C., Channell J. E. T., 1994. Late Paleozoic remagnetization in limestones of the Craven Basin (northern England) and the rock magnetic fingerprint of remagnetized sedimentary carbonates. J. Geophys. Res. 99 (B3), 4603—4612. doi:org/10.1029/93JB02802.

McEnroe S. A., Harrison R. J., Jackson M. J., Hirt A. M., Robinson P., Langenhorst F., Heidelbach F., Kasama T., Putnis A., Brown L. L., Golla-Schindler U., 2005. Lamellar magnetism: Effects of interface versus exchange interactions of nanoscale exsolutions in the ilmenite-hematite system. J. Physics: Conference Series 17, 154—167. doi:10.1088/1742-6596/17/1/022.

McFadden P. L., McElhinny M. W., 1990. Classification of the reversal test in palaeomagnetism. Geophys. J. Int. 103, 725—729.

Robertson D. J., France D. E., 1994. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetization acquisition curves. Phys. Earth Planet. Int., 82, 223—234.

Roy J. L., Park J. K., 1972. Red beds: DRM or CRM? Earth Planet. Sci. Lett. 17, 211—216.

Schmidt P. W., Williams G. E., McWilliams M. O., 2009. Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia: Implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran System. Precamb. Res. 174, 35—52.

Smethurst M. A., Khramov A. N., 1992. A new Devonian palaeomagnetic pole for the Russian platform and Baltica, and related apparent polar wander. Geophys. J. Int. 108, 179—192.

Środoń J. Paszkowski M., Drygant D., Anczkiewicz A., Banaś M., 2013. Thermal history of Lower Paleozoic rocks on the Peri-Tornquist Margin of the East European Craton (Podolia, Ukraine) inferred from combined XRD, K-Ar, and AFT data. Clays and Clay Minerals 61, 107—132. http://dx.doi.org/10.1346/CCMN.2013.0610209.

Steiner M. B., 1983. Mesozoic apparent polar wander and plate motions of North America. In: Mesozoic Paleogeography of the West-Central United States: Rocky Mountain Paleogeography Symposium 2 (Eds M. W. Reynolds, E. D. Dolly). SEPM Rocky Mtn Section, 1—11.

Sun Z., Yang Z., Pei J., Yang T., Wang X., 2006. New Early Cretaceus paleomagnetic data from volcanic and red beds of the eastern Quaidam Block and its implications for tectonics of Central Asia. Earth Planet. Sci. Lett. 243, 268—281.

Symons D. T., Cioppa M. T., 2002. Conodont CAI and magnetic mineral unblocking temperature: implications for the Western Canada Sedimentary Basin. Phys. Chem. Earth 27, 1189—1193.

Tarling D. H., Hrouda F., 1993. The Magnetic Anisotropy of Rocks. London: Chapman & Hall, 217 p.

Tauxe L., Kent D. V., Opdyke N. D., 1980. Magnetic components contributing to the NRM of middle Siwalik red beds. Earth Planet. Sci. Lett. 47, 279—284.

Torsvik T. H., Smethurst M. A., 1999. Plate tectonic modeling: virtual reality with GMAP. Computer & Geisiences 25, 395—402.

Torsvik T. H., Smethurs M. A., Van der Voo R., Trench A., Abrahamsen N., Halvorsen E., 1992. Baltica — synopsis of Vendian-Permian palaeomagnetic data and their palaeotectonic implications. Earth Sci. Rev. 33, 133—152.

Torsvik T. H., Van der Voo R., Preeden U., McNiocaill C., Steinberger B., Doubrovine P., van Hinsbergen D. J. J., Domeier M., Gaina C., Tohver E., Meert J. G., McCausland P. J. A., Cocks L. R. M., 2012. Phanerozoic polar wander, paleogeography and dynamics. Earth Sci. Rev.114, 325—368. doi:10.1016/j.earscirev.2012.06.007.

Torsvik T. H., Smethurst M. A., Meert J. G., Van der Voo R., McKerrow W. S., Sturt B. A., Brasier M. D., Walderhaug H. J., 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic — a tale of Baltica and Laurentia. Earth Sci. Rev. 40, 229—258.

Van der Voo R., Torsvik T. H., 2012. The history of remagnetization of sedimentary rocks: deceptions, developments and discoveries. In: Remagnetization and Chemical Alteration of Sedimentary Rocks (Eds R. D. Elmore, A. R. Muxworthy, M. M. Aldana, M. Mena). Geol. Soc. London, Spec. Publ., 371 p.

Van Houten F. B., 1968. Iron oxides in red beds. Geol. Soc. Amer. Bull. 79, 399—416.

Walker T. R., Larson E. E., Hoblitt R. P., 1981. Nature and origin of hematite in the Moenkopi Formation (Triassic), Colorado Plateau: A contribution to the origin of magnetism in red beds. J. Geophys. Res. 86, 317—333.

Yuan K., Van der Voo R., Bazhenov M. L., Bakhmutov V., Alekhin V., Hendriks B. W. H., 2011. Permian and Triassic paleolatitudes of the Ukrainian shield with implications for Pangea reconstructions. Geophys. J. Int. 184, 595—610. doi:10.1111/j.1365-246X.2010.04889.x.

Published

2015-02-01

How to Cite

Bakhmutov, V., Yelenskaya, M., Kadzyalko-Hofmokl, M., Polyachenko, E., Konstantinenko, L., & Zhilkovsky, P. (2015). Paleomagnetic and rock magnetic study of Lower Devonian red beds from Podolia: remagnetization problems. Geofizicheskiy Zhurnal, 37(1), 62–82. https://doi.org/10.24028/gzh.0203-3100.v37i1.2015.111326

Issue

Section

Articles