Spatial-temporeral changes in the geomagnetic field and seismisity

Authors

  • M.I. Orlyuk S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • A. V. Marchenko S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • А. A. Romenets S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v39i6.2017.116371

Keywords:

geomagnetic field, seismicity, lithospheric plates, magnetization, deep fluids

Abstract

This paper presents the results of an analysis of spatial-temporeral changes in the Earth’s magnetic field and its seismicity for the period 1950—2015. The International Geomagnetic Field of the 12 generation (BIGRF-12) was analyzed. This model allows one to study the characteristic features of magnetic anomalies with dimensions of the first thousands of kilometers. To determine the temporal changes in the geomagnetic field (dB/dt), digital datasets of BIGRF were developed for the period 1950—2015 in a 1°Ч1° grid and for an interval of 5 years. Temporal changes were divided into the virtual long-wave core-generated and short-wave mantle-lithospheric — generated components. There were revealed 2 negative and 3 positive foci of the core-generated component. For the 65 y period the component changes in these foci range from –6600 to 2000 nT (from –100 to 30 nT/y), the foci being characterized by the significant westward drift. 12 positive and 10 negative foci were delineated in the mantle-lithospheric-caused component. During 65 years most of the foci do not change their location. The changes in magnitude of positive and negative foci are 175—490 nT, (2,5—7,5 nT/y) and –(220—535) nT, (–(3,4—8,2) nT/y) respectively. In the southwestern domain of the Earth the intensity of seismicity is lower and the core-originated component is significantly decreased in comparison with the northwestern domain. The relationship is observed between areas of increased seismic activity, foci of the mantle-lithospheric component of the geomagnetic field and areas of its positive increase, which tectonically correspond to the junction zones of lithospheric plates of the «subduction», «collision» and «mid-ocean-rift» types. On the basis of the regularities revealed, two mechanisms of such an association are proposed: a) «temperature-magnetic», caused by discending the magnetic blocks of the oceanic crust in a subduction zone and also serpentinization of ultrabasic rocks of the upper mantle; b) «fluid-gas-magnetic», based on the formation and transformation of ferruginous minerals under the influence of the mantle gases and fluids. The magnetic blocks of the Earth’s lithosphere are more solid than those of the non-magnetic. Therefore, within the blocks, as well as on their margins, the accumulation of large stresses is possible and, consequеntly, the preconditions are created for the formation of earthquake foci.

References

Andreev B. A., 1960. Geophysical methods in regional and structural geology. Moscow: State Scientific and Technical Publishing House of Literature on Geology and Conservation of Subsoil, 260 p. (in Russian).

Bogdanov Yu. A., Pavlovich V. N., Shuman V. N., 2009. Spontaneous electromagnetic emission of the lithosphere: the state of the problem and mathematic models. Geofizicheskiy zhurnal 31(4), 20—33 (in Russian).

Gantimurov A. A., 1982. Fluid regime of iron-si¬licon systems. Novosibirsk: Siberian Branch of the USSR Academy of Sciences, 106 p. (in Russian).

Gokhberg M. B., Shalimov S. L., 2008. The impact of earthquakes and explosions on the ionosphere. Moscow: Nauka, 295 p. (in Russian).

Gulyelmi A. V., Zotov O. D., 2012. About magnetic disturbances before strong earthquakes. Fizika Zemli (2), 84—87 (in Russian).

Gufeld I. L., Gusev G. A., Matveeva M. I., 1998. Metastability of the lithosphere as a manifestation of the ascending diffusion of light gases. Doklady AN 365(5), 677—680 (in Russian).

Gulfeld I. L., Matveeva M. I., 2011. The barrier effect of degassing and destruction of the Earth's crust. Doklady RAN 438(2), 253—257 (in Russian).

Kolesova V. I., 1985. Analytical methods of magnetic cartography. Moscow: Nauka, 224 p. (in Russian).

Kochergin E. V., Pavlov Yu. A., Sergeev K. F., 1980. Geomagnetic anomalies of the Kurile and Ryukyu island systems. Moscow: Nauka, 127 p. (in Russian).

Kuznetsova V. G., Maksymchuk V. Yu., Gorodyskyy Yu. M., Nikiforova N. M., Pronyshyn R. S., 2005. Investigation of seismicity of the Carpathians with phases of the 11-year cycle of solar activity and magnetic storms with a sudden start. Geofizicheskiy zhurnal 27(5), 849—856 (in Ukrainian).

Larin V. N., 1980. The hypothesis of the initially hydride Earth. Moscow: Nedra, 216 p. (in Russian).

Levshenko V. T., 1995. Ultra-low-frequency electromagnetic signals of lithospheric origin: Author's abstract. dis. Dr. phys. and math. sci. Moscow: IPE RAS, 36 p. (in Russian).

Letnikov F. A., Karpov I. K., Kiselev A. I., Shkandriy B. O., 1977. The fluid regime of the earth's crust and upper mantle. Moscow: Nauka, 216 p. (in Russian).

Livshits L. D., Pecherskiy D. M., Trukhin V. I., 1969. The effect of growth of residual magnetization upon heating of wustite. In: Magnetism of rocks and paleomagnetism. Moscow: IPE Academy of Sciences of the USSR, P. 13—15 (in Russian).

Logachev A. A., 1968. Magnetic prospecting. Leningrad: Nedra, 296 p. (in Russian).

Lykasov A. A., Riss G. M., Vlasova I. S., 2013. Phase transformations during reduction of slag of sulfide copper melting by products of gasification of carbonaceous reductants at 1320 K. Vestnik SUSU. Ser. «Metallurgy» 13(1), 24—28 (in Russian).

Lukin A. E., 2009. Native-metallic micro- and nano-inclusions in formations of oil and gas-bearing basins as tracers of super-deep fluids. Geofizicheskiy zhurnal 31(2), 61—92 (in Russian).

Ol A. I., 1949. Century course of the magnetic field and seismicity of the Earth. Priroda (12), 6—14 (in Russian).

Orlyuk M. I., 1999. Magnetic model of the earth's crust of the south-west of the East European platform: Dis. Dr. geol. sci. Kyiv, 404 p. (in Ukrainian).

Orlyuk M. I., 2000. Spatial and spatial-temporal magnetic models of different-structure structures of the continental type lithosphere. Geofizicheskiy zhurnal 22(6), 148—165 (in Russian).

Orlyuk M. I., 1991. Theoretical magnetic models of continental rifts. Dopovidi AN URSR (8), 115—119 (in Ukrainian).

Orlyuk M. I., Marchenko A. V., Romenets A. O., 2016a. Seismicity of the Earth and age changes of its main magnetic field. Geophysical technology forecasting and monitoring of the geological environment: Proc. of the VI Int. Conf. Lviv, P. 202—204 (in Ukrainian).

Orlyuk M., Marchenko A., Romenets A., 2016b. Relationship of earth's seismicity and age changes in its magnetic field. Visnyk Kyyivskoho natsionalnoho universytetu. Heolohiya (75), 50—54 (in Ukrainian).

Orlyuk M. I., Pashkevich I. K., 2012. Deep sources of regional magnetic anomalies: tectonotypes and relation with transcrustal faults. Geofizicheskiy zhurnal 34(4), 224—234 (in Russian).

Orlyuk M. I., Pashkevich I. K., 1995. Magnetic model of the southwestern edge of the East European platform. Geofizicheskiy zhurnal 17(6), 31—36 (in Russian).

Orlyuk M. I., Pashkevich I. K., 1993. Theoretical magnetic models of continental paleorifts and island arcs. Geofizicheskiy zhurnal 15(5), 32—41 (in Russian).

Orlyuk M. I., Romenets A. A., 2005. New criterion for estimating the spatiotemporal perturbation of the Earth's magnetic field and some aspects of its use Geofizicheskiy zhurnal 27(6), 1012—1023 (in Russian).

Orlyuk M. I. Romenets A. A., 2011. Structure and dynamics of the Earth's main magnetic field on its surface and in near space. Odessa astronomical publications 24, 124—129 (in Russian).

Romanyuk T. V., Rebetskiy Yu. L., Mikhaylov A. V., 2007. Cenozoic geodynamic evolution and tectonophysical model of the Cascade subduction zone (north-western margin of North America). Byulleten Moskovskogo obshchestva ispytateley prirody. Otdel geologicheskiy 82(5), 19—40 (in Russian).

Rusakov O. M., 1969. Magnetic field of the Earth in the Mesozoic. Kiev: Naukova Dumka, 146 p. (in Russian).

Pashkevich I. K., Mozgovaya A. P., Orlyuk M. I., 1993. Volumetric magnetic model of Crimea and adjacent regions with reference to seismic zoning. In: Geodynamics and deep structure of seismogenic zones of Ukraine. Kiev: Naukova Dumka, P. 9—18 (in Russian).

Petrova G. N., 1976. Century variations and the core-mantle boundary. Results of studies on international geophysical projects. In: Geomagnetic studies. No 17. Moscow: Nauka, P. 15—21 (in Russian).

Petromagnetic model of the lithosphere, 1994. Ed. D. M. Pecherskiy. Kiev: Naukova Dumka, 175 p. (in Russian).

Pochtarev V. I., 1983. Normal magnetic field of the Earth. Moscow: Nauka, 268 p. (in Russian).

Simonenko T. N., 1976. The structure of the magnetoactive shell of the continent. Results of studies on international geophysical projects. In: Geomagnetic studies. No 17. Moscow: Nauka, P. 53—58 (in Russian).

Semenov V., Petrishchev M., 2016. Annual variations of the Earth's resistance and their connection with tectonic zones in Eurasia. Geophysical technology forecasting and monitoring of the geological environment: Proc. of the VI Int. Conf. Lviv, P. 259—260 (in Russian).

Sergeeva N. G., Ogloblina O. F., Chernyakov S. M., 2009. Strong earthquakes and their influence on the polar lower ionosphere. Vestnik MGTU (2), 328—337 (in Russian).

Sobisevich L. Ye., Kanonidi K. Kh., Sobisevich A. L., 2010. Observations of ULF geomagnetic disturbances, reflecting the processes of preparation and development of tsunamigenic earthquakes. Doklady AN 435(4), 548—553 (in Russian).

Sobisevich L. Ye., Kanonidi K. Kh., Sobisevich A. L., Miseyuk O. I., 2013а. Geomagnetic disturbances in variations of the Earth's magnetic field at the stages of preparation and development of Turkish (08.03.2010) and North Caucasian (19.01.2011) earthquakes. Doklady AN 449(1), 93—96 (in Russian).

Sobisevich L. Ye., Sobisevich A. L., Kanonidi K. Kh., 2012. Anomalous geomagnetic disturbances induced by catastrophic tsunamigenic earth¬quakes in the region of Indonesia. Geofi¬zi¬ches¬kiy zhurnal 34(5), 22—37 (in Russian).

Sobisevich A. L., Starostenko V. I., Sobisevich L. Ye., Kendzera A. V., Shuman V. N., Volfman Yu. M., Potemka E. P., Kanonidi K. Kh., Garifulin V. A., 2013б. The Black Sea earthquakes of late December 2012 and their manifestation in the geomagnetic field. Geofizicheskiy zhurnal 35(6), 54—71 (in Russian).

Sobisevich A. L., Rogozhin Ye. A., Sobisevich L. Ye., Kanonidi K. Kh., Kendzera A. V., Marchenko A. V., Orlyuk M. I., 2014. Perturbations of the geomagnetic field in the Sichuan earthquake 20 April 2013 (Ms = 7.0). Geofizicheskiy zhurnal 36(4), 37—49 (in Russian).

Khachikyan G. Ya., Zhakupov N. S., Kadyrkhanova N. Zh., 2013. Geomagnetic conjugation of modern tectonic structures. Geodinamika i tektonofizika 4(2), 187—195 (in Russian).

Shuman V. N., 2012. Electromagnetic emission of the lithosphere: do we always adequately interpret what we know about as? Geofizicheskiy zhurnal 34(2), 4—19 (in Russian).

Shuman V. N., 2010. Electromagnetic emission of the lithosphere: new experimental results and analysis of the problem. Geoinformatika (4), 79—93 (in Russian). http://dspace.nbuv.gov.ua/handle/123456789/95758.

Shcherbina S. V., 2013. Correlation analysis of the connection between the dynamics of solar plasma and the process of earthquake generation. Geodinamika (2), 370—372 (in Russian).

Yagodin A. P., 2015. The KaY-wave prevents an earthquake. Haifa: Akavish, 78 p. (in Russian).

Blakely B., Brocher T., Wells R., 2005. Subduction — zone magnetic anomalies and implications for hydrated forearc mantle. Geology 33(6), 445—448. doi 10.1130/G21447.1.

Dunlop D., Ozdemir O., Costanzo-Alvarez V., 2010. Magnetic properties of rocks of the Kapuskasing uplift (Ontario, Canada) and origin- of long-wavelength magnetic anomalies. Geophys. J. Int. (183), 645—–658. https://doi.org/10.1111/j.1365-246X.2010.04778.x.

Fedorova N. V., Shapiro V. A., 1998. Reference field for the airborne magnetic data. Earth Planet. Space 50, 397—404.

Ferre E., Friedman S. A., Martin-Hernández F., Feinberg J. M., Till J. L., Ionov D. A., Conder J. A., 2014. Eight good reasons why the uppermost mantle could be magnetic. Tectonophysics 624-625, 3—14. doi 10.1016/j.tecto.2014.01.004.

Finlay C. C., Olsen N., Kotsiaros S., Gillet N., Toffner-Clausen L., 2016. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth Planet. Space 68:112. doi: 10.1186/s40623-016-0486-1.

Ishimaru S., Arai S., Shukuno H., 2009. Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka. Earth Planet. Sci. Lett. 284(3-4), 352—360. https://doi.org/10.1016/j.epsl.2009.04.042.

Hyndman R. D., Peacock S. M., 2003. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417—432. doi:10.1016/S0012-821X(03)00263-2.

Khachikyan G., Inchin A., Lozbin A., 2012. Spatial distribution of seismicity: relationships with geomagnetic Z-component in geocentric solar magnetospheric coordinate system. Int. J. Geosci. 3(5), 1084—1088. doi: 10.4236/ijg.2012.35109.

Kletetschka G., Wasilewski P., Taylor P., 2002. The role of hematite–ilmenite solid solution in the production of magnetic anomalies in ground- and satellite-based data. Tectonophysics 347(1-3), 167—177.

Mandea M., Korte M. (eds.), 2011. Geomagnetic Observations and Models. IAGA Special Sopron Book Series; Vol. 5. 343 p. doi: http://doi.org/10.1007/978-90—481-9858-0.

Mavrodiev S., Pekevski L., Kikuashvili G., Botev E., Getsov P., Mardirossian G., Sotirov G., Teodossiev D., 2015. On the Imminent Regional Seismic Activity Forecasting Using INTERMAGNET and Sun-Moon Tide Code Data. Open Journal of Earthquake Research (4), 102—113. doi: 10.4236/ojer.2015.43010.

Niu F., Levander A., Ham S., Obayashi M., 2005. Mapping the subducting Pacific slab beneath southwest Japan with Hi-net receiver functions. Earth Planet. Sci. Lett. 239, 9––17. doi:10.1016/j.epsl.2005.08.009.

Pashkevich I. K., Orlyuk M. I., 1997. Magnetic model of the lithosphere and some problems of Geomagnetic Reference Field. Abstracts, 8th Scientific Assembly of IAGA, Uppsala. P. 485.

Purucker M. E., Clark D. A., 2011. Mapping and interpretation of the Lithospheric Magnetic Field. In: M. Mandea, M. Korte (eds.). Geomagnetic Observations and Models. IAGA Special Sopron Book Series Vol. 5, P. 311—337. doi: 10.1007/978-90—481-9858-0.

Purucker M., Whaler W., 2007. Crustal magnetism, in Geomagnetism. In: M. Kono. (ed.). Treatise on Geophysics. Vol. 5. Ch. 6. Amsterdam: Elsevier, P. 195—237.

Semenov V., Petrishchev M., 2017. Induction Sounding of the Earth’s Mantle. Springer International Publishing AG. 100 p. doi: 10.1007/978-3-319-53795-5.

Thébault E., Finlay C. C., Beggan C. D., Alken P., Aubert J., Barrois O., Bertrand F., Bondar T., Boness A., Brocco L., Canet E., Chambodut A., Chulliat A., Coпsson P., Civet F., Du A., Fournier A., Fratter I., Gillet N., Hamilton B., Hamoudi M., Hulot G., Jager T., Korte M., Kuang W., Lalanne X., Langlais B., Lager J. M., Lesur V., Lowes F. J., 2015. Special issue «International Geomagnetic Reference Field — the twelfth generation«. Earth Planet. Spa¬ce 67:79. https://doi.org/10.1186/s40623-015-0313-0

Thébault E., Purucker M., Whaler K. A., Langlais B., Sabaka T. J., 2010. The Magnetic Field of the Earth’s Lithosphere. Space Sci. Rev. 155(1-4), 95—127. doi: 10.1007/s11214-010—9667-6.

Wasilewski P. J., Warner R. D., 1988. Magnetic petrology of deep crustal rocks — Ivrea Zone, Italy. Earth Planet. Sci. Lett. 87(3), 347—361. doi: 10.1016/0012-821X(88)90022-2.

Published

2017-11-30

How to Cite

Orlyuk, M., Marchenko, A. V., & Romenets А. A. (2017). Spatial-temporeral changes in the geomagnetic field and seismisity. Geofizicheskiy Zhurnal, 39(6), 84–105. https://doi.org/10.24028/gzh.0203-3100.v39i6.2017.116371

Issue

Section

Articles