Lithospheric structure based on integrated analysis of geological-geophysical data along the DOBREfraction’99/DOBRE-2 profile (the East European Platform —the East Black Sea Basin)

Authors

  • I. Pashkevich Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • O. Rusakov Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • R. Kutas Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • D. Gryn Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • V. Starostenko Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • T. Janik Institute of Geophysics, Polish Academy of Sciences, Poland

DOI:

https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147476

Keywords:

lithosphere, asthenosphere, deep faults, sutures, subcrustal decompaction, crust—mantle mixture, paleosubduction zones, East European Platform, Scythian Plate, East Black Sea Basin

Abstract

The continuous DOBREfraction’99/DOBRE-2 WARR and CDP profile of 775 km length with about 100 km overlap was acquired by an international team from Ukraine, Poland, Denmark, USA, Netherlands, Germany, Great Britain and Norway in 1996 and 2007 respectively. It crosses southeastern East European Craton (the southern slope of the Voronezh Massif, Donbas, the Priazov Megablock), the North Azov Trough, the Middle Azov High, the Indolo-Kuban Depression, the Crimea-Caucasus inversion zone, the Sorokin Trough, the Shatsky and Andrusov Ridges in the Eastern Black Sea Basin. In terms of the number of tectonic structures of different ages and origin, the profile has no analogues in world practice. Along the profile there has first been carried out an interdisciplinary geological and geophysical study of the entire lithospheric cross-section with the use of seismic data, magnetic, gravity and thermal fields, information on seismic tomography and spontaneous electric emission of the Earth. Fundamentally new information has been obtained for the structure of the lithosphere and a number of controversial problems have been convincingly solved. Tectonically, the lithosphere is a complex collage of structures arised in different geodynamic conditions from the Archean to the Neogene as a result of successive stages of its formation. The regional regularities in the structure of the lithosphere are the decrease in the thickness of the crust from north to south, from ancient structures to young ones with simultaneous elevation of the top of asthenosphere from 210 km under the Voronezh Massif to 90 km under the East Black Sea Basin. The standard continental crystalline crust has been mapped on the southern slope of the Voronezh Massif and in the Priazov Megablock. It has been reworked by the Paleozoic rifting in Donbas. The analysis of the heterogeneity of the crystalline crust and mantle has first been used to assess the position of the actual boundary of the East European Platform and the transition zone to the Scythian Plate, which corresponds to the deepest position of the asthenosphere top and the division between domains of different seismic velocities in the lithospheric mantle. The changes in the crystalline crust type under the Main Azov Thrust fixes the buried boundary of the East European Platform. The relationship has been established between large sedimentary structures and the areas of change in the composition of the crystalline crust along suture zones. The main faults of the sedimentary cover as the sutures of different ages have been traced in the cross-section of the crystalline crust and in the upper mantle. The subcrustal decomposition of the mantle and the crust—mantle mixture at the base of the crust of the maximum thickness between the South Crimean and Mesozoic sutures and in Donbas have resulted from the lithosphere reworking during its development. Different types of crystalline crust and gentle inclined intracrustal disturbances sometimes causing doubling different layers of the crystalline crust provide evidence of repeated subduction of the oceanic crust of the Paleo-, Mezo- and Neotethys. The low-velocity mantle layer between the South Crimean and Mesozoic sutures indicates a present-day manifestation of the total effect of post-Paleozoic subductions. A set of possible rocks has been determined for the crystalline crust within the southern slope of the Voronezh Massif, Donbas and the Azov Mega block. In the Crimea-Caucasus inversion zone at a depth of 30 km a complex of rocks has been documented to be inherent in the standard continental crust which is an alternative to the speculation about the local elevation of the upper mantle due to the serpentinization of mafic rocks.

References

Bogdanov, Yu. A., Pavlovich, V. N., & Shuman, V. N. (2009). Spontaneous electromagnetic emission of the lithosphere: state of the problem and mathematical models. Geofizicheskiy zhurnal, 31(4), 20—33 (in Russian).

Buryanov, V. B., Makarenko, I. B., Starostenko, V. I., & Legostaeva, O. V. (1999). The eastern part of the Dnieper-Donets depression and the Don-bass: a new three-dimensional density model. Geofizicheskiy zhurnal, 21(4), 20—39 (in Russian).

Gerasimov, M. E., Bondarchuk, G. K., & Yudin, V. V. (2005). Tectonic Map of the Azov-Black Sea Region. 1 : 500 000. Kiev: State Geological Survey of Ukraine (in Ukrainian).

Gintov, O. B., Egorova, T. P., Tsvetkova, T. A., Bugayenko, I. V., & Murovskaya, A. V. (2014). Geodynamic features of junction zone of the Eurasian Plate and the Alpine-Himalayan belt within the limits of Ukraine and adjacent are-as. Geofizicheskiy zhurnal, 36(5), 26—63. https: //doi.org/10.24028/gzh.0203-3100.v36i5.2014. 111568 (in Russian).

Hozhyk, P. F., Chebanenko, I. I., Krayushkin, V. O., Yevdoshchuk, M. I., Krupskyy, B. L., Hladun, V. ... Fedun, O. M. (2006). Oil and gas perspective objects of Ukraine. Scientific and practical bases of hydrocarbon exploration in the Sea of Azov. Kiev: ECMO (in Ukrainian).

Yegorova, T. P., & Starostenko, V. I. (2006). Gravitational Modeling and Density Models. In The structure and dynamics of the lithosphe-re of Eastern Europe. The results of studies on the program EUROPROBE (Vol. 2, pp. 333—336). Moscow: GEOKART, GEOS (in Russian).

Yegorova, T. P., Stifenson, R. A., Kozlenko, V. G., Starostenko, V. I., Zavorotko, A. N., & Legostaeva, O. V. (2000). Three-dimensional gravity modeling of the structure of the Earth’s crust of the Dnieper-Donets Basin and Donbass. Geofizicheskiy zhurnal, 22(6), 81—92 (in Russian).

Entin, V. À. (2005). Geophysical basis of the tectonic map of Ukraine in scale 1 : 1 000 000. Geofizicheskiy zhurnal, 27(1), 74—84 (in Russian).

Zakharov, I. G., Kulinich, M. S., Loyko, N. P., Fedotova, I. N., & Chernyakov, A. M. (2014). Study of the Earth’s crustal structure along the “DOBRE” and “DOBRE-2” regional profi-les using the method of the Earth’s spontaneous electromagnetic emission. Geologiya i poleznyye iskopayemyye Mirovogo okeana, (3), 49—60 (in Russian).

Ilchenko, T. V., & Stepanenko, V. M. (1998). The speed model of the crust and upper mantle of Donbass and its geological interpretation. Geofizicheskiy zhurnal, 20(2), 95—105 (in Russian).

Korchin, V. A., Burtnyy, P. A., & Kobolev, V. P. (2013). Thermobaric petrobaric modeling in geophysics. Kiev: Naukova Dumka (in Russian).

Krasovskiy, S. S. (1981). Reflection of the dynamics of the continental-type crust in a gravitational field. Kiev: Naukova Dumka (in Russian).

Krutikhovskaya, Z. A., Pashkevich, I. K., & Silina, I. M. (1982). Magnetic model and structure of the crust of the Ukrainian Shield. Kiev: Naukova Dumka (in Russian).

Kuprienko, P. Ya., Makarenko, I. B., Starostenko, V. I., Legostaeva, O. V., & Savchenko, A. S. (2010). Three-dimensional density model of the Earth’s crust and upper mantle of the Dnieper-Donets Basin and Donbass. Geofizicheskiy zhurnal, 32(6), 175—214. https://doi.org/10.24028/gzh.0203-3100.v32i6.2010.117461 (in Russian).

Kutas, R. I. (2010). Geothermal conditions of the Black Sea basin and its surrounding. Geofizicheskiy zhurnal, 32(6), 135—158. https://doi. org/10.24028/gzh.0203-3100.v32i6.2010.117453 (in Russian).

Kutas, R. I., Orlyuk, M. I., Pashkevich, I. K., Burakhovich, T. K., Makarenko, I. B., & Bugayenko, I. V. (2018). The deep structure and territory of Ukraine according to modern geo-physical data. General information. In V. I. Starostenko, & I. B. Gintov (Eds), Sketches of Geodynamics of Ukraine (pp. 17—23). Kiev: Publishing House “VI-EN-EY” (in Russian).

Kutas, R. I., & Pashkevich, I. K. (2000). Geother-mal and magnetic models of the Donbass earth crust (tectonic analysis together with the data of the DSZ). Geofizicheskiy zhurnal, 22(4), 21—36 (in Russian).

Kutas, R. I., & Tsvyashchenko, V. A. (1993). Thermal processes in the geological history of Donbass. Geofizicheskiy zhurnal, 15(2), 42—53 (in Russian).

Lapina, E. P., Mikheeva, T. L., & Panchenko, N. V. (2016). Localization of geological objects according to magnetometric data with application of algorithms of automated selection. Geofizicheskiy zhurnal, 38(6), 160—172. https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91 904 (in Russian).

Moskalenko, V. N., & Malovitsky, Ya. P. (1974). Results of Deep Seismic Sounding on the Transmeridional Profile through the Sea of Azov and the Black Sea. Izvestiya AN SSSR. Seriya geologicheskaya, (9), 23—30 (in Russian).

Orlyuk, M. I., Pashkevich, I. K., & Lebed, T. V. (2009). A 3D magnetic model of the Earth’s crust in the Azov-Black Sea region. Geofizicheskiy zhurnal, 31(5), 102—114 (in Russian).

Pashkevich, I. K., Mozgovaya, A. P., & Orlyuk, M. I. (1994). And the Scythian Plate and adjacent regions. Magnetic inhomogeneities. In Lithosphere of Central and Eastern Europe: Young Platforms and Alpine Fold Belt (pp. 250—252). Kiev: Naukova Dumka (in Russian).

Popkov, V. I. (2009). Folded-thrust dislocations in the sedimentary cover of the Sea of Azov. Geotectonika, (4), 84—93 (in Russian).

Rusakov, O. M., Pashkevich, I. K., Makarenko, I. B., & Lebed, T. V. (2013). The deep structure of the Mid-Black Sea Rise and the Sinop Trough: Abstracts of the XI International Conference “Crimea-2013”: “The Azov-Black Sea testing ground for the study of geodynamics and fluid dynamics of the formation of oil and gas fields” (pp. 19—22). Simferopol: AGEO (in Russian).

Sollogub, V. B. (1986). Lithosphere of Ukraine. Kiev: Naukova Dumka (in Russian).

Sollogub, V. B., Borodulin, M. I., & Chekunov, A. V. (1977). The deep structure of Donbass and adjacent territories. Geologicheskiy zhurnal, 37(2), 23—31 (in Russian).

Starostenko, V. I., Kuprienko, P. Ya., Makarenko, I. B., & Legostaeva, O. V. (2008). Density model of the Earth’s crust along the DOBRE profile. Geofizicheskiy zhurnal, 30(1), 28—41 (in Russian).

Starostenko, V. I., Kuprienko, P. Ya., Makarenko, I. B., Legostaeva, O. V., & Savchenko, A. S. (2012). Density inhomogeneity of the Earth’s crust along the latitudinal zones of the faults of the Ukrainian Shield and the Dnieper-Do-nets basin. Geofizicheskiy zhurnal, 34(6), 113—132. https://doi.org/10.24028/gzh.0203-3100. v34i6.2012.116718 (in Russian).

Starostenko, V. I., Lukin, A. E., Kobolev, V. P., Rusakov, O. M., Orlyuk, M. I., Shuman, V. N., ... Savchenko, A. S. (2009). Model of the deep structure of the Donetsk folded structure according to regional geophysical observations. Geofizicheskiy zhurnal, 31(3), 44—68 (in Russian).

Starostenko, V. I., Makarenko, I. B., Rusakov, O. M., Pashkevich, I. K., Kutas, R. I., & Legostaeva, O. V. (2010). Geophysical heterogeneity of the lithosphere of the mega-basin of the Black Sea. Geofizicheskiy zhurnal, 32(5), 3—20. https://doi. org/10.24028/gzh.0203-3100.v32i5.2010.117496 (in Russian).

Stovba, S. N., & Stifenson, R. A. (2000). Comparative analysis of the structure and history of the formation of the southeastern part of the Dnieper-Donets Basin and the Donets Fold Structure. Geofizicheskiy zhurnal, 22(4), 37—61 (in Russian).

Kolosovskaya, V. A. (Ed.). (1992). Structural-formational map of the crystalline basement of the south-western part of the East European Platform. In Geology and metallogeny of the south-western part of the East European platform (A set of maps, Scale 1 : 1,000,000). Kiev: State Committee on Geology of Ukraine, Geoprognosis (in Russian).

Kruglov, S. S., & Gursky, D. S. (Eds). (2007). Tec-tonic map of Ukraine. 1 : 1,000,000. Kiev: Ministry of Conservation of the Natural Environment of Ukraine, State Geological Survey (in Ukrainian).

Ulanovskaya, T. E., Zelenshchikov, G. V., & Kalinin, V. V. (2011). On some unsolved problems of the stratigraphy of southeastern Europe. Proceedings of the international conference dedicated to the memory of Viktor Efimovich Khain. Moscow, 1—4 February 2011 (pp. 1920—1926) (in Russian).

Khortov, A. V., & Neprochnov, Yu. P. (2006). Deep structure and selected aspects of the oil and gas potential of the southern seas of Russia. Oceanologiya, 46(1), 114—122 (in Russian).

Tsvetkova, T. A., Bugaenko, I. V., & Zaets, L. N. (2017). Seismic visualization of plumes and super-deep fluids in mantle under Ukraine. Geofizicheskiy zhurnal, 39(4), 42—54. https://doi.org/10.24028/gzh.0203-3100.v39i4.2017. 107506 (in Russian).

Shcherbakov, I. B. (2005). Petrology of the Ukrainian Shield. Lvov: ZUKTS (in Russian).

Yudin, V. V. (2001). Predskifisky marginal deflection. Reports of the III International Conference “Crimea-2001”: Geodynamics and oil and gas bearing systems of the Black Sea-Caspian region (pp. 177—183). Simferopol: Tavriya Plus (in Russian).

Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust. A global view. Journal of Geophysical Research, 100, 9761—9788. doi: 10.1029/95JB00259.

“DOBREfraction’99” Workin Group (Grad, M., Gryn, D., Guterch, A., Janik, T., Keller, R., Lang, R., Lyngsie, S. B., Omelchenko, V., Starostenko, V. I., Stephenson, R. A., Stovba, S. M., Thybo, H., Tolkynov, A. (2003). “DOBREfraction’99” — velocity model of the crust and upper mantle beneath the Donbas Fold belt (East Ukraine). Tectonophysics, 371(1), 81—110.

Gobarenko, V., Yegorova, T., & Stephenson, R. (2017). Local tomography model of the northern Black Sea: intra-plate crustal underthrusting. In M. Sosson, R. Stephenson, S. A. Adamia (Eds.), Tectonic Evolution of the Eastern Black Sea and Caucasus (Vol. 428, pp. 222—239). Geol. Soc. London, Special Publ. http://doi.org/10.1144/SP428.11.

Holbrook, W. S., Money, W. D., & Christensen, N. I. (1992). The seismic velocity structure of the deep continental crust. In D. M. Fountain, R. Arculus, & R. W. Kay, (Eds.), Continental lower crust. Development in Geotectonics (pp. 1—43). Amsterdam: Elsevier.

Khriachtchevskaia, O., Stovba, S., & Stephenson, R. (2010). Cretaceous-Neogene tectonic evolution of the northern margin of the Black Sea from seismic reflection data and tectonic subsidence analysis. In M. Sosson, N. Kaymakci, R. Stephenson, F. Bergerat, V. Starostenko (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform (Vol. 340, pp. 137—157). Geol. Soc. London, Special Publ. doi: 10.1144/SP 340.3 0305-8719/10/$15.00.

Kono, M. (Ed.). (2009). Geomagnetism. Amsterdam: Elsevier.

Kutas, R. I., Kobolev, V. P., & Tsvyashchenko, V. A. (1998). Heat flow and geothermal model of the Black Sea depression. Tectonophysics, 291(1-4), 91—100. https://doi.org/10.1016/S0 040-1951(98)00033-X.

Lee, W. H. K., Jennings, P., Kisslinger, C., & Kanamor, H. (Eds.) (2002). International Handbook of Earthquake & Engineering Seismology. New York, London, Oxford, Boston, San Diego: Academic Press.

Lepp, H. (1957). Stages in the oxidation of hematite. The American Mineralogist, 42, 679—681.

Lyngsie, S. B., Thybo, Y., & Lang, R. (2007). Rifting and lower crust reflectivity. A case study of the intracratonic Dnieper-Donets rift zone, Ukraine. Journal of Geophysical Research, 112, B1240. doi: 10.1029.2006JB004795.

Maystrenko, Yu., Stovba, S., Stephenson, R., Bayer, U., Menyoli, E., Gajewski, D., ... Tolkunov, A. (2003). Crustalscale pop-up structure in cratonic lithosphere: DOBRE deep seismic reflection study of the Donbas Foldbelt, Ukraine. Geology, 31(8), 733—736. doi: 10.1130 /G19329.1.

McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Sciences Letters, 40(1), 25—32. https: //doi.org/10.1016/0012-821X(78)90071-7.

Meisner, A., Sheya, C., & Nemcok, M. (2011). Ancient Depositional Environments of the Eastern Black Sea. Search and Discovery Article #50388. http://www.searchanddiscovery.com /pdfz/documents/2011/50388meisner/ndx_ meisner.pdf.html.

Musacchio, G., Mooney, W. D., Luetgert, J. H., & Christensen, N. I. (1997). Composition of the crust in the Grenville and Appalachian Provinces of North America inferred from VP /VS ratios. Journal of Geophysical Research, 102(B7), 15,225—15,241.

Nikishin, A. M., Vannier, A. S., Aleekseev, O. A., Mendinger, P. A., Fokin, R. R., Gabdullin, A. K., ... Rubtsova, E. V. (2017). Mesozoic to recent geological history of southern Crimea and the Eastern Black Sea region. In M. Sosson, R. Ste-phenson, S. A. Adamia (Eds.), Tectonic Evolution of the Eastern Black Sea and Caucasus (Vol. 428, pp. 241—264). Geol. Soc. London, Special Publ. http://doi.org/10.1144/SP 428.11.

Péréz-Gussinyé, M., & Reston, T. J. (2001). Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup. Journal of Geophysical Research: Solid Earth, 106(B3), 3961—3975.

Rudnick, R. L., & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33(3), 267—309.

Rüpke, L. H., Schmid, D. W., & Hartz, E. H. (2013). Causes and Consequences of Mantle Serpentinization During Passive Margin Formation. Search and Discovery Article #120118. http://www.searchanddiscovery.com/documents/2013/120118rupke/ndx_rupke.pdf.

Schwartz, S., Guillot, S., Reynard, B., Lafay, R., Nicollet, C., Debret, B., … Auzende, A. L. (2012). Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178, 197—210. doi: 10. 1016/j.lithos.2012.11.023.

Shillington, D. J., White, N., Minshull, T. A., Edwards, G. R. H., Jones, S. M., Edwards, R. A., Scott, C. L. (2008). Cenozoic evolution of the Eastern Black Sea: a test of depth-dependent stretching models. Earth and Planetary Science Letters, 265(3-4), 360—378. https://doi. org/10.1016/j.epsl.2007.10.033.

Starostenko, V., Buryanov, V., Makarenko, I., Rusakov, O., Stephenson, R., Nikishin, A., ... Sava, S. (2004). Topography of the crust—mantle boundary beneath the Black Sea Basin. Tectonophysics, 381(1-4), 211—233. doi: 10.1016/j.tecto.2002.08.001.

Starostenko, V., Janik, T., Stephenson, R., Gryn, D., Rusakov, O., Czuba, W., ... Shulgin, A. (2017). DOBRE-2 WARR profile: the Earth’s upper crust across Crimea between the Azov Massif and the northeastern Black Sea Basin. In M. Sosson, R. Stephenson, S. A. Adamia (Eds), Tectonic Evolution of the Eastern Black Sea and Caucasus (Vol. 428, pp. 199—220). Geol. Soc. London, Special Publ.

Sydorenko, G., Stephenson, R., Yegorova, T., Starostenko, V., Tolkunov, A., Janik, T., ... Omelchenko, V. (2017). Geological structure of the northern part of the Eastern Black Sea from regional seismic reflection data including the DOBRE-2 CDP profile. In M. Sosson, R. Stephenson, S. A. Adamia (Eds), Tectonic Evolution of the Eastern Black Sea and Caucasus (Vol. 428, pp. 307—321). Geol. Soc. Lon-don, Special Publ. http://doi.org/10.1144/SP 428.15.

Taylor, P., & Owen, D. G. (1993). Oxidation in magnetite in aerated aqueous media. Atomic Energy of Canada Limited Report, AECL-10821, COG-93-81. https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/000/27000 133.pdf.

Thybo, H., & Artemieva, I. (2013). Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609, 605—619. doi: 10.1016/j.tecto.2013.05.032.

Wernicke, B. (1985). Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22(1), 108—125. https://doi.org/10.1139/e85-009.

Yegorova, T. P., Stephenson, R. A., Kozlenko, V. G., Starostenko, V. I., Legostaeva, O. V. (1999). 3D gravity analysis of the Dnieper-Donets Basin and Donbas Foldbelt, Ukraine. Tectonophysics, 313(1-2), 41—58. https://doi.org/10.1016 /S0040-1951(99)00189-4.

Yegorova, T., Baranova, E., & Omelchenko, V. (2010). The crustal structure of the Black Sea from the reinterpretation of deep seismic so-unding data acquired in the 1960s. In: M. Sosson, N. Kaymakci, R. Stephenson, F. Berge-rat, & V. Starostenko (Eds), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform (Vol. 340, pp. 43—56). Geol. Soc. London, Special Publ. doi: 10. 1144/SP340.4.

Published

2018-11-26

How to Cite

Pashkevich, I., Rusakov, O., Kutas, R., Gryn, D., Starostenko, V., & Janik, T. (2018). Lithospheric structure based on integrated analysis of geological-geophysical data along the DOBREfraction’99/DOBRE-2 profile (the East European Platform —the East Black Sea Basin). Geofizicheskiy Zhurnal, 40(5), 98–136. https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147476

Issue

Section

Articles