Relation between geomagnetic field and climate variability. Part 2: Probable mechanism

Authors

  • N. Kilifarska National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Bulgaria
  • V. Bakhmutov S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • G. Melnik S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v37i5.2015.111146

Keywords:

main geomagnetic field, climate variability, mechanism of influence

Abstract

In this study we show that correspondence of the main structures of geomagnetic field, near surface air temperature and surface pressure in the mid-latitudes, reported previously in the 1st part of the paper, has its physical foundation. The similar pattern, found in latitude-longitude distribution of the lower stratospheric ozone and specific humidity, allows us to close the chain of causal links, and to offer a mechanism through which geomagnetic field could influence on the Earth’s climate. It starts with a geomagnetic modulation of galactic cosmic rays (GCR) and ozone production in the lower stratosphere through ion-molecular reactions initiated by GCR. The alteration of the near tropopause temperature (by O3 variations at these levels) changes the amount of water vapour in the driest part of the upper troposphere/lower stratosphere (UTLS), influencing in such a way on the radiation balance of the planet. This forcing on the climatic parameters is non-uniformly distributed over the globe, due to the heterogeneous geomagnetic field controlling energetic particles entering the Earth’s atmosphere.

References

Bakhmutov V. G., Martazinova V. F., Ivanova E. K., Melnik G. V., 2011. Changes in the main magnetic field and climate of the twentieth century. Dopovidi NAN Ukrainy. Nauky pro Zemlyu (7), 90—94 (in Russian).

Bakhmutov V., Martazinova V., Kilifarska N., Melnik G., Ivanova E., 2014. Communication of climate change with the geomagnetic field. 1. Spatial and temporal structure of the Earth's magnetic field and climate in the twentieth century. Geofizicheskiy zhurnal 36(1), 81—104 (in Russian).

Vinogradov P. S., Larin I. K., Poroykova A. I., Tal'roze V. L., 1980. Mechanism of the effect of cosmic rays on the Earth's ozone layer. The current state of research on ozone layer in the USSR: Proceedings of the All-Union meeting on the ozone. Moscow: Gidrometeoizdat, Р. 123—130 (in Russian).

Krivolutskiy A. A., Repnev A. I., 2009. Impact of cosmic factors on the ozone layer of the Earth. Moscow: GEOS, 384 p. (in Russian).

Krivolutskiy A. A., Repnev A. I., 2012. Impact cosmic of energetic particles in the Earth's atmosphere (review). Geomagnetizm i aeronomiya 52(6), 723—754 (in Russian).

Kuznetsov N. D., Kuznetsov V. V., 2012. Effect of cosmic radiation and the the secular variations of the geomagnetic field on the evolution of life. Vestnik SVNTs DVO RAN (2), 11—18 (in Russian).

Larin I. K., Tal'roze V. L., 1977. Conditions and possible scale of influence of charged particles to the death of ozone in the stratosphere. Doklady AN SSSR 233(3), 410—413 (in Russian).

Loginov V. F., 2008. Worldwide and regional of climate change: causes and consequences. Minsk: TetraSistems, 496 p. (in Russian).

Markov M. N., Mustel E. P., 1983. Spatial and temporal effects of solar-terrestrial relations in the troposphere and thermosphere. Astronomicheskiy zhurnal 60, 417—421 (in Russian).

Rakobolskaya I. V., 1971. Nuclear Physics. Moscow: MSU Publ., 296 p. (in Russian).

Banks P. M., Kockarts G., 1973. Aeronomy. Part A. New York, London: Acad. Press., 430p.

Bazilevskaya G. A., Usoskin I. G., Flückiger E. O., Harrison R. G., Desorgher L., Bütikofer R., Krainev M. B., Makhmutov V. S., Stozhkov Y. I., Svirzhevskaya A. K., Svirzhevsky N. S., Kovaltsov G. A., 2008. Cosmic Ray Induced Ion Production in the Atmosphere. Space Sci Rev. 137, 149—173.

Brasseur G., Solomon S., 2005. Aeronomy of the middle stratosphere: chemistry and physics of the stratosphere and mesosphere. Dordrecht, Netherlands: Springer, 644 p.

Cacace F., de Petris G., Rosi M., Troiani A., 2002. Formation of O3+ upon ionization of O2: The role of isomeric O4+ complexes. Chem. Eur. J. 8, 3653—3659.

Cacace F., de Petris G., Troiani A., 2001. Experimental detection of tetraoxygen. Angew. Chem. Int. 40, 4062—4065.

de Petris G., 2003. Atmospherically relevant ion chemistry of ozone and its cation. Mass Spectrom. Rev. 22, 251—271.

Forbush S. E., 1960. Time variations of cosmic rays. AGU Spec. Publ. by ed. Van Allen 37, 323—411.

Foster P. M., Shine K., 1997. Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res. 102(D9), 10841—10855.

Forster P. M., Tourpali K., 2001. Effect of tropopause height changes on the calculation of ozone trends and their radiative forcing. J. Geophys. Res. 106(D), 12241—12251.

Gauss M., Myhre G., Isaksen I. S. A., Grewe V., Pitari G., Wild O., Collins W. J., Dentener F. J., Ellingsen K., Gohar L. K., Hauglustaine D. A., Iachetti D., Lamarque F., Mancini E., Mickley L. J., Prather M. J., Pyle J. A., Sanderson M. G., Shine K. P., Stevenson D. S., Sudo K., Szopa S., Zeng G., 2006. Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmos. Chem. Phys. 6, 575—599.

Glassmeier K. -H., Neuhaus A., Vogt J., 2002. Space Climatology. Invited presentation. Alpach Summer School.

Hallegatte S., Lahellec A., Grandpeix J. Y., 2006. An Elicitation of the Dynamic. J. Atmos. Sci. 63, 1878—1894.

Inamdar A. K., Ramanathan V., Loeb N. G., 2004. Satellite observations of the water vapor greenhouse effect and column longwave cooling rates: Relative roles of the continuum and vibration—rotation to pure rotation bands. J. Geophys. Res. 109, D06104. doi:10.1029/2003JD003980.

IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. S. Solomon, Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M., Miller H. L. United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge, 996 p.

Itikawa Y., 2006. Cross Sections for Electron Collisions with Nitrogen Molecules. J. Phys. Chem. Ref. Data. 35(1), 31—53.

Jackman C. H., Frederick J. E., Stolarski R. S., 1980. Production of Odd Nitrogen in the Stratosphere and Mesosphere: An Inter-comparison of Source Strengths. J. Geophys. Res. 85(C12), 7495—7505.

Jonson J. E., Sudnet J. K., Tarrason L., 2001. Model calculations of present and future levels of ozone and ozone precursors with a global and regional model. Atmospheric Environment 35, 525—537.

Kilifarska N. A., 2013. An Autocatalytic Cycle for Ozone Production in the Lower Stratosphere Initiated by Galactic Cosmic Rays. Comptes Rendus de l’Academie Bulgare des Sciences 66(2), 243—252.

Kilifarska N. A., 2012a. Climate sensitivity to the lower stratospheric ozone variations. J. Atmos. Sol. Terr. Phys. 90-91, 9—14.

Kilifarska N. A., 2012b. Mechanism of lower stratospheric ozone influence on climate. Int. Rev. Phys. 6(3), 279—289.

Kilifarska N. A., 2012с. Ozone as a mediator of galactic cosmic rays’ influence on climate. Sun and Geosphere 7(1), 97—102.

Kirkby J., 2007. Cosmic rays and climate. Surv. Geophys. 28, 333—375. doi: 10.1007/s10712-008-9030-6.

Kovaltsov G. A., Usoskin I. G., 2007. Regional cosmic ray induced ionization and geomagnetic field changes. Adv. Geosci. 13, 31—35.

Lantos P., 2005. Predictions of galactic cosmic ray intensity deduced from that of sunspot number. Solar Physic 229, 373—385.

Lindzen R. S., 1990. Some coolness concerning global warming. Bull. Amer. Meteor. Soc. 71, 288—299.

McCracken K. G., Beer J., 2007. Long-term changes in the cosmic ray intensity at Earth, 1428—2005. J. Geophys. Res. 112, A10101. doi:10.1029/2006JA012117.

Mende W., Stellmacher R., 2000. Solar variability and the search for corresponding climate signals. Space Sci. Rev. 94, 295—306.

Miksǒvsky J., Raidl A., 2005. Testing for nonlinearity in European climatic time series by the method of surrogate data. Theor. Appl. Climatol. 83, 21—33.

Miyahara H., Yokoyama Y., Masuda K., 2008. Possible link between multi-decadal climate cycles and periodic reversals of solar magnetic field polarity. Earth Planet. Sci. Lett. 272, 290—295.

Mote P. W., Rosenlof K. H., Holton J. R., Harwood R. S., Waters J. W., 1996. An atmospheric type recorder: The imprint of tropopause temperatures on stratospheric water vapour. J. Geophys. Res. 101, 3989—4006.

Mursula K., Usoskin I. G., Kovaltsov G. A., 2003. Reconstructing the long-term cosmic ray intensity: linear relations do not work. Ann. Geophys. 21, 863—867.

Oyama K. J., Schlegel K., 1984. Anomalous electron temperatures above the South American magnetic field anomaly. Planet Space Sci. 32, 1513—1522.

Pinto O. Jr., Gonzalez W. D., Pinto I. R. C., Gonzalez I. L. C., Mendes Jr. O., 1992. The South Atlantic magnetic anomaly: three decades of research. J. Atmos. Terr. Phys. 54, 1129—1134.

Porter H. S., Jackman C. H., Green A. E. S., 1976. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. J. Chem. Phys. 65, 154—167.

Ramanathan V., Callis L. B., Boucher R. E., 1976. Sensitivity of surface temperature and Atmospheric temperature to perturbations in the Stratospheric ozone and Nitrogen dioxide. J. Atmos. Sci. 33, 1092—1112.

Randel W. J., Shine K. P., Austin J., Barnett J., Claud C., Gillett N. P., Keckhut P., Langematz U., Lin R., Long C., Mears C., Miller A., Nash J., Seidel D. J., Thompson D. W. J., Wu F., Yoden S., 2009. An update of observed stratospheric temperature trends. J. Geophys. Res. 114. D02107. doi:10.1029/2008JD010421.

Randel W. J., Wu F., Gettelman A., Russell J. M., Zawodny J. M., Oltmans S. J.,

Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data. J. Geophys. Res., 106, 14,313—14,325.

Rosen J. M., Hofmann D. J., 1981. Balloon-Borne Measurements of Electrical Conductivity, Mobility, and the Recombination Coefficient. J. Geophys. Res. 86(C8), 7406—7410.

Rozelot J. P., Pireaux S., Lefebvre S., Ajabshirizadeh A., 2004. The Sun asphericities: astrophysical relevance. Available on: arXiv:astro-ph/0403382 v3 (1 Apr 2004).

Schmidt G. A., Ruedy R. A., Miller R. L., Lacis A. A., 2010. Attribution of the present-day total greenhouse effect. J. Geophys. Res. 115. D20106. doi:10.1029/2010JD014287.

Seidel D. J., Randel W. J., 2006. Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res. 111. D21101. doi:10.1029/2006JD007363.

Shea M. A., Smart D. F., 2004. Preliminary study of cosmic rays, geomagnetic field changes and possible climate changes. Adv. Space Res. 34, 420—425.

Slanger T. G., Jusinski L. E., Black G., Gadd G. E., 1988. A new laboratory source of ozone and its atmospheric implications. Science 241, 945—950.

Spencer R. W., Braswell W. D., 1997. How Dry is the Tropical Free Troposphere? Implications for Global Warming Theory. Bull. Amer. Meteor. Soc. 78(6), 1097—1106.

Stuber N., Sausen R., Ponater M., 2001. Stratosphere adjusted radiative forcing calculations in a comprehensive climate model. Theor. Appl. Climatol. 68, 125—135.

Tomasi C., Cacciari A., Vitale V., Lupi A., Lanconelli C., Pellegrini A., Grigioni P., 2004.Mean vertical profiles of temperature and absolute humidity from a 12—year radiosounding data set at Terra Nova Bay (Antarctica). Atmos. Res. 71, 139—169.

US Standard Atmosphere. US Government Printing Office, Washington, D.C., 1976.

Usoskin I. G., Gladysheva O. G., Kovaltsov G. A., 2004. Cosmic ray-induced ionization in the atmosphere: spatial and temporal changes. J. Atmos. Sol. Terr. Phys. 66, 1791—1796.

Usoskin I. G., Schussler M., Solanki S. K., Mursula K., 2005. Solar activity, cosmic rays, and Earth’s temperature: A millennium-scale comparison. J. Geophys. Res. 110, A10102. doi:10.1029/2004JA010946.

Van Allen J. A., 1959. The geomagnetically trapped corpuscular radiation. J. Geophys. Res. 64(11), 1683—1689. doi:10.1029/JZ064i011p01683.

Velinov P. I. Y., Mateev L., Kilifarska N., 2005. 3-D model for cosmic ray planetary ionisation in the middle Atmosphere. Ann. Geophys. 23, 3043—3046.

Wang W-Ch., Pinto J. P., Yunk Y. L., 1980. Climatic effect due to the halogenated compound in the Earth Atmosphere. Atmos. Sci. 37, 333—338.

Wang W-Ch., Zhuang Y-Ch., Bojkov R., 1993. Climate implications of observed changes in ozone vertical distributions at middle and high latitudes of the Northern Hemisphere. Geophys. Res. Lett. 20(15), 1567—1570.

Werner R., Stebel K., Hansen H. G., Hoppe U. P., Gausa M., Kivi R., von der Gathen P., Orsolini Y., Kilifarska N., 2011. Study of the seasonal ozone variations at European high latitudes. Adv. Space Res. 47, 740—747.

Wirth V., 1993. Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. J. Geophys. Res. 98, 8873—8882.

World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion — 2006. Global Ozone Research and Monitoring Project, Report No. 50, Geneva, Switzerland.

Yang X., Price J.M., Mack J. A., Morgan C. G., Rogaski C. A., McGuire D., Kim E. H., Wodtke A. M., 1993. Stimulated emission pumping studies of energy transfer in highly vibrationally excited molecules. J. Phys. Chem. 97, 3944—3955.

Zhaunerchyk V., Geppert W. D., Österdahl F., Larsson M., Thomas R. D., 2008. Dissociative recombination dynamics of the ozone cation. Phys. Rev. A 77. doi:10.1103/PhysRevA.77.022704.

Published

2015-10-01

How to Cite

Kilifarska, N., Bakhmutov, V., & Melnik, G. (2015). Relation between geomagnetic field and climate variability. Part 2: Probable mechanism. Geofizicheskiy Zhurnal, 37(5), 66–92. https://doi.org/10.24028/gzh.0203-3100.v37i5.2015.111146

Issue

Section

Articles