Tonalite-trondjemite-granodiorite formation of the Archaean. Special features of composition and conditions of formation, Ukrainian Shield as an example

Authors

  • O.V. Usenko Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v43i1.2021.225541

Abstract

Tonalite-trondjemite-granodiorite formation (TTG) produces the main volume of acidic rocks of the continental crust. Similar rocks are never met later. Therefore the problems of their production are directly connected with the problem of the crust and mantle formation.

The structure of the Archean TTG formation of granite-gneiss area of the Bug megablock and granite-grrenstone area of the Middle Dnieper megablock (MDMB) has been considered. Similar and different features have been found. The analysis of these data resulted in a conclusion that within the MDMB, West Periazovian and Khashchevate-Zavalie block of the Middle Bug area the events of formation of the Archean granite-greenstone area were similar, however these three blocks of the Ukrainian Shield demonstrate different levels of erosion damage reflected in PT-conditions of metamorphic transformations.

The rocks of TTG formation are a part of complex structured stratum appeared as a result of impregnation (migmatization) by quartz-albite melt of the primary crust and/or of more ancient strata of predominantly basic composition. In the middle-lower crust a partial replacement of the primary crust occurred and in the upper one — the deposition of new portions of the melt on the earlier ones, piercement of granite masses and migmatization of volcanogenic stratum.  During the Archean these events happened repeatedly, that resulted in partial replacement of the primary crust with plagiogranites.

Modern notions have been considered on the processes of producing of TTG granite formation. It has been shown that according to thermal model distribution of temperatures in the crust does not cross the line of basalt water solidus. That is why the appearance of granite melts could not be the result of submergence to big depths (ultrametamorphism). Chronological and genetic relation with mantle melting, of which komatiites and spilites of green-stone structures were crystallized, assumed convective flows in the mantle. To explain the formation of tonalite and trondjemite melt a model of two-leveled crystallization differentiation of ultrabasic melt has been used. However appearance of primary basalt replacement in such a scale and assimilation of green-stone roots by granite melt are possible only in case of interaction of mantle fluids with the rocks of primary crust. An assumption has been made that the composition of some part of these fluids could be close to composition of granite (trondjemite). According to the author’s opinion such assumption confirms a hypothesis of V. Griffin and N. Pirson about formation of crystalline mantle on the border between the Archean and Proterozoic.

References

Bobrov, O.B., Stepanyuk, L.M., Sergeev, S.A., & Presnyakov, S.L. (2008). Metatonalytes of the Dnipropetrovsk complex and age stages of their formation (geological position, composition, results of Shrimp radiology). Zbirka naukovykh prats' UkrDHRI, (1), 9—24 (in Ukrainian).

Venidiktov, V.M. (1986). Polycyclic development of granulite facies. Kiev: Naukova Dumka, 268 p. (in Russian).

Vrevskiy, A.B., Lobach-Zhuchenko, S.B., Che¬kulaev, V.P., Kovalenko, A.V., & Ares¬to¬va, N.A. (2010). Geological, petrological, isotopic, and geochemical constraints of geo¬dy¬namic models simulating formation of the Ar¬chean tonalite-trondhjemite-granodiorite associations in ancient cratons. Geotectonika, (4), 1—19 (in Russian).

Girnis, A.V., Ryabchikov, I.D., & Bogatikov, O.A. (1987). Genesis of komatiites and komatiite basalts. Moscow: Nauka, 120 p. (in Russian).

Gordienko, V.V. (2007). Advection-polymorphic hypothesis of deep processes in the tec¬to¬no¬sphere. Kiev: Corvin press, 170 p. (in Russian).

Usenko, I.S. (Ed.). (1985). Granulite facies of the Ukrainian Shield. Kiev: Naukova Dumka, 220 p. (in Russian).

Kondi, K. (1983). Archean greenstone belts. Mos¬cow: Mir, 390 p. (in Russian).

Korzhinskiy, D.S. (1976). Acid-base interaction of magma with transmagmatic fluids: Proc. of the International Geological Congress. XXV session. Geochemistry. Mineralogy. Petrology (pp. 320—328). Moscow: Nauka (in Russian).

Kutas, R.I. (2008). Thermal evolution and formation of the Precambrian crust. Collection of scientific works: Evolution of Precambrian granitoids and related minerals in connection with the Earth's energy and stages of its tectonic-magmatic ac¬tivation (pp. 90—96). Kyiv: UkrDGRI (in Rus¬sian).

Lobach-Zhuchenko, S.B. (2014). Ancient cratons — age, structure, composition, geodynamics. Mineralohichnyy zhurnal, 36(2), 61—70 (in Russian).

Lobach-Zhuchenko, S.B., Balaganskiy, V.V., Bal¬ty¬baev, Sh.K., Stepanyuk, L.M., Po¬no¬ma¬ren¬ko, A.N., Lokhov, K.I., Koreshkova, M.Yu., Yur¬chnenko, A.V., Egorova, Yu.S., Sukach, V.V., Be¬rezhnaya, N.G., & Bogomolov, E.S. (2013). The age of zircons from the enderbitic-gneis¬ses of the Middle Bug region (Dniester-Bug megablock of the Ukrainian Shield. Mineralohichnyy zhurnal, 35(4), 86—98 (in Russian).

Lobach-Zhuchenko, S.B., Baltybaev, Sh.K., Glebovitskiy, V.A., Sergeev, S.A., Lokhov, K.I., Egorova, Yu.S., Balaganskiy, V.V., Skublov, S.G., Galankina, O.L., & Stepanyuk, L.M. (2017). U-Pb-SHRIMP-II-age and origin of zircon from lherzolite of the Pobuzhsky Paleoarchean complex (Ukrainian shield). Doklady RAN, 477(5), 567—571. https://doi.org/10.7868/S0869565217350134 (in Russian).

Lobach-Zhuchenko, S.B., Kaulina, T.V., Ma¬rin, Yu.B., Yurchenko, A.V., Skublov, S.G., Ego¬ro¬va, Yu.S., Galankina, O.L., & Sergeev, S.A. (2019). Paleoarchean U-Pb (SIMS SHRIMP-II) age of mafic granulites of the Pobuzhsky complex of the Ukrainian Shield. Doklady RAN, 484(3), 344—347. https://doi.org/10.31857/S0869-56524843344-347.

Lobach-Zhuchenko, S.B., Kaulina, T.V., Su¬kach, V.V., Yurchenko, A.V., Baltybaev, Sh.K., & Balaganskiy, V.V. (2015). The oldest granulites of the Ukrainian shield, Pobuzhsky granulite complex. Naukovyy visnyk Natsionalnoho hir¬ny¬choho universytetu, (1), 21—27 (in Russian).

Marakushev, A.A., & Bobrov, A.V. (2005). Me¬ta¬mor¬phic petrology. Moscow: Moscow State University Publishing House, 256 p. (in Rus¬sian).

Usenko, I.S. (Ed.). (1982). Metamorphism of the Ukrainian Shield. Kiev: Naukova Dumka, 308 p. (in Russian).

Orsa, V.I. (1988). Granite formation in the Pre¬camb¬ri¬an of the Middle Dnieper granite-greenstone re¬gion. Kiev: Naukova Dumka, 202 p. (in Russian).

Perchuk, L.L. (1997). Deep fluid flows and the birth of granite. Sorosovskiy obrazovatel'nyy zhurnal, (6), 56—63 (in Russian).

Ponomarenko, O.M. (Ed.). (2011). Petrology and geochemistry of black kitoids of the Ukrainian Shield. Kyiv: Naukova Dumka, 216 p. (in Ukrainian).

Purtov, V.K., Anfilogov, V.N., & Egorova, L.G. (2002). Interaction of basalt with chloride solutions and the mechanism of formation of acidic melts. Geokhimiya, (10), 1084—1097 (in Russian).

Ryabchikov, I.D. (1982). Fluid mass transfer and mantle magma formation. Vulkanologiya i seysmologiya, (5), 3—9 (in Russian).

Stepanyuk, L.M. (1996). Crystallogenesis and age of zircons from rocks of the mafic-ultramafic association of the Middle Bug region. Mineralohichnyy zhurnal, 18(4), 10—19 (in Russian).

Stepanyuk, L.M., Skobelev, V.M., Dovbush, T.I., & Ponomarenko, O.M. (2004). Uranium-lead isotopic age of monazite and clastogenic zircon from quartzite of the Koshara-Alexander world — age limits of formation of rocks of the Bug series. Zbirnyk naukovykh prats UkrDHRI, (2), 43—50 (in Ukrainian).

Esipchuk, K.E. (Ed.). (1985). Precambrian stratigraphic sections of the Ukrainian Shield. Kiev: Naukova Dumka, 168 p. (in Russian).

Sukach, V.V. (2014). Mesoarchean greenstone structures of the Middle Dnieper region of the Ukrainian Shield: stratigraphic sections, material composition and age correlation. Mineralohichnyy zhurnal, 36(2), 77—91 (in Rus¬sian).

Usenko, O.V. (2019). Geodynamic process and fluid regime of the Archean. Palmarium Academic Pulishing, 112 c. (in Russian).

Usenko, O.V. (2014). Formation of melts: geo¬dy¬namic process and physicochemical in¬ter¬ac¬tions. Kiev: Naukova Dumka, 240 p. (in Rus¬sian).

Shatskiy, V.S., Buzlukova, L.V., Yagoutts, E., Kozmenko, O.A., & Mityukhin, S.I. (2005). Struc¬ture and evolution of the lower crust of the Daldyn-Alakit region of the Yakut diamondiferous province (according to the study of xenoliths). Geologiya i geofizika, 46(12), 1273—1289 (in Russian).

Shinkarev, I.F., & Ivannikov, V.V. (1983). Physical and chemical petrology of igneous rocks. Leningrad: Nedra, 271 p. (in Russian).

Shumlyanskiy, L.V. (2012). Geochemistry of py¬ro¬xene plagiogenesis (enderbits) of Po¬bu¬zhye and isotopic composition of hafnium in zircons. Mineralohichnyy zhurnal, 34(2), 64—79 (in Russian).

Shcherbak, N.P., Artemenko, G.V., Lesnaya, I.M., & Ponomarenko, A.N. (2005). Geochronology of the Early Precambrian of the Ukrainian Shi¬eld. Archaea. Kiev: Naukova Dumka, 244 p. (in Rus¬sian).

Shcherbak, N.P., Artemenko, G.V., Lesnaya, I.M., Ponomarenko, A.N., & Shumlyanskiy, L.V. (2008). Geochronology of the Early Precambrian of the Ukrainian Shield. Proterozoic. Kiev: Nau¬kova Dumka, 240 p. (in Russian).

Shcherbak, N.P., & Artemenko, G.V. (2014). Geo¬chronology and geodynamics of the Archean megablocks of the Ukrainian Shield. Mineralohichnyy zhurnal, 36(2), 7—17 (in Russian).

Shcherbakov, I.B. (2005). Petrology of the Ukrainian Shield. Lvov: ZuKTs, 366 p. (in Russian).

Arth, J.G., Barker, F., Peterman, Z.E., & Friedman, I. (1978). Geochemistry of the gabbro-diorite-tonalite-trondjemite suite of southwest Finland and its implications for the origin of tonalitic and trondiemitic magmas. Journal of Petrology, 19(2), 289—316. https://doi.org/10.1093/petrology/19.2.289.

Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O'Reilly, S.Y., & Pearson, N.J. (2010). The growth of the continental crust: cons¬traints from zircon Hf-isotope data. Lithos, 119(3-4), 457—466. https://doi.org/10.1016/j.lithos.2010.07.024.

Carlson, R.W., Pearson, D.G., & James, D.E. (2005). Physical, chemical and chronological characteristics of continental mantle. Reviews of Geophysics, 43, RG1001, 1—24. http://doi.org/10.1029/2004RG000156.

Сondie, K.C. (2011). Earth and evolving planetary system. Elsevier, 574 p.

Ernst, R.E., & Buchan, K.L. (2003). Recognizing mantle plumes in the geological record. Annual Review of Earth and Planetary Sciences, 31, 469—523. https://doi.org/10.1146/annurev.earth.31.100901.145500.

Glikson, A.Y. (1972). Early Precambrian evidence of a primitive oceani crust and island nuclei of codic granite. Geological Society of America Bulletin, 83, 3323—3334. https://doi.org/10.1130/0016-7606(1972)83[3323:EPEOAP]2.0.CO;2.

Griffin, W., Belousova, E., O'Neill, C., O'Reilly, S.Y., Malkovets, V., Pearson, N., Spetsius, S., & Wilde, S. (2014). The world turns over: Ha¬de¬an-Archean crust-mantle evolution. Li¬thos, 189, 2—15. https://doi.org/10.1016/j.li-thos.2013.08.018.

Gudfinnsson, G.H., & Presnal, D.C. (2005). Con¬ti¬nu¬оus gradations among primary carbonatic, melilitic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3—8 GPa. Journal of Petrology, 46(8), 1645—1659. https://doi.org/10.1093/petrology/egi029.

Hawkesworth, C.J., & Kemp, A.I.S. (2006). Evolution of the continental crust. Nature, 443, 811—817. https://doi.org/10.1038/nature05191.

Isley, A.E., & Abbott, D.H. (2002). Implication of the temporal distribution of high-Mg magmas for mantle plume volcanism through time. The Journal of Geology, 110(2), 141—158. https://doi.org/10.1086/338553.

Jakobsson, S., & Holloway, J.R. (2008). Mantle melting in equilibrium with an IronWüstiteGraphite buffered COH-fluid. Contributions to Mineralogy and Petrology, 155, 247—256. https://doi.org/10.1007/s00410-007-0240-6.

Lobach-Zhuchenko, S.B., Kaulina, T.V., Bal¬ty¬ba¬ev, S.K., Balagansky, V.V., Egorova, Yu.S., Lo¬khov, K.I., Skublov, S.G., Sukach, V.V., Bo¬gomolov, E.S., Stepanyuk, L.M., Ga¬lan¬kina, O.L., Berezhnaya, N.G., Kapitonov, I.N., Antonov, A.V., Sergeev, S.A. (2016). The long (3.7—2.1 Ga) and multistage evolution of the Bug Granulite-Gneiss Complex, Ukrainian Shield, based on the SIMS U-P bages and geochemistry of zircons from a single sample.. In J. Halla, M.J. Whitehouse, T. Ahmad, Z. Bagai (Еds.), Crust-Mantle Interactions and Granitoid Diversification: Insights from Archaean Cratons (Vol. 449, pp. 175—206). Geol. Soc., London, Spec. Publ. http://doi.org/10.1144/SP449.3.

Lobach-Zhuchenko, S.B., Balagansky, V.V., Bal¬ty¬baev, Sh.K., Bibikova, E.V., Chekulaev, V.P., Yur¬chen¬ko, A.V., Arestova, N.A., Artemenko, G.V., Ego¬rova, Yu.S., Bogomolov, E.S., Sergeev, S.A., Skub¬lov, S.G., & Presnyakov, S.L. (2014). The Orekhov-Pavlograd Zone, Ukrainian Shield: Milestones of its evolutionary history and constraints for tectonic models. Precambrian Research, 252, 71—87. https://doi.org/10.1016/j.precamres.2014.06.027.

Martin, H. (1994). Archean gray gneisses and the genesis of continental crust. In K.C. Condie (Ed.), Archean CrustalEvolution (pp. 205—260). Elsevier.

Meyer, C., Williams, I.S., & Compston, W. (1996).

Uranium-lead ages for lunar zircons-Evidence for a prolonged period of granophyre for¬ma¬ti¬on from 4.32 to 3.88 Ga. Meteoritics and Pla¬netary Sciences, 31, 370—387. https://doi.org/10.1111/j.1945-5100.1996.tb02075.x.

Moyen, J.-F., & Martin, H. (2012). Forty years of TTG research. Lithos, 148, 312—336. https://doi.org/10.1016/j.lithos.2012.06.010.

Perchuk, A.L., & Morgunova, A.A. (2014). Variable P-T paths and HP—UHP metamorphism in a Precambrian terrane, Gridino, Russia: Pet¬ro¬lo¬gi¬cal evidence and geodynamic im¬pli¬ca¬ti¬ons. Gondwana Research, 25(2), 614—629. https://doi.org/10.1016/j.gr.2012.09.009.

Rapp, R.P., Watson, E.B., & Miller, C.F. (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrian Research, 51(1-4), 1—25. https://doi.org/10.1016/0301-9268(91)90092-O.

Sobolev, A.V., Asafov, E.V., Gurenko, A.A., Arndt, N.T., Batanova, V.G., Portnyagin, M.V., Garbe-Schönberg, D., & Krasheninnikov, S.P. (2016). Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature, 531, 628—636. https://doi.org/10.1038/nature17152.

Springer, W., & Seck, H.A. (1997). Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of ТТG magmas. Contributions to Mineralogy and Petrology, 127, 127—154. https://doi.org/10.1007/s004100050263.

Walter, M.J. (2003). Melt Extraction and Com¬po¬sitional Variability in Mantle Lithospheres. Trea¬tise on Geochemistry, 2, 363—394. https://doi.org/10.1016/B0-08-043751-6/02008-9.

Wyllie, P.J. (1977). Effects of Н2О and СО2 on magma generation in the crust and mantle. Journal of the Geological Society, 134, 215—234. https://doi.org/10.1144/gsjgs.134.2.0215.

Published

2021-03-13

How to Cite

Usenko, O. . (2021). Tonalite-trondjemite-granodiorite formation of the Archaean. Special features of composition and conditions of formation, Ukrainian Shield as an example. Geofizicheskiy Zhurnal, 43(1), 38–68. https://doi.org/10.24028/gzh.0203-3100.v43i1.2021.225541

Issue

Section

Articles