Palaeomagnetism of the Vendian traps of Volyn, southwestern margin of the East European Platform, P. 2: magnetostratigraphy

Authors

  • V.G. Bakhmutov Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine; Institute of Geophysics Polish Academy of Sciences, Ukraine
  • I.B. Poliachenko Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • S.I. Cherkes Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • D.V. Hlavatskyi Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v44i6.273638

Keywords:

palaeomagnetism, Ediacaran magnetic field, Volyn traps

Abstract

We present new results of palaeomagnetic studies of the Vendian (Ediacaran) rocks of the Volyn Basalt Province revealed by six boreholes on the NW Ukraine. This is a continuation of previous studies of upper part of the Volyn series described by Bakhmutov et al. [2021]. In the recent works [Shcherbakova et al., 2020; Thallner et al., 2022], the results of palaeointensity determinations of the Volyn series basalts showed the ultra-low dipole moment of Earth’s magnetic field which coincident with other palaeomagnetic data for Ediacaran indicating an extremely weak geomagnetic field. Clear stratification and correlation of the basalt and tuff layers by magnetic parameters allow us to determine the magnetic field reversals throughout the stratigraphic succession of the Volyn series of about 400 m thick. In basalts, tuffs and baked contact rocks, a high-temperature characteristic component of remanent magnetization (ChRM) with all signs of primary magnetization have been isolated. For the directions of inclination of ChRM-components at least six magnetic polarity reversals were revealed. The geochronological ages of rocks is in the range of 580—545 Ma, but the errors in the age estimation are too large for separation of individual formations within the pulses of activity or differentiation of individual eruptions. Therefore the formation time of the entire stratum remains uncertain, and the key issue for interpretation of the magnetic polarity reversal frequency is the duration of accumulation of traps. Two possible interpretations of palaeomagnetic results are considered. In the first, which takes into account different stages of magmatic activity, the time interval of accumulation can be about 10 million years. Then the average frequency of geomagnetic inversions is close to mean for the Phanerozoic. We prefer the other interpretation when the formations of the Large Igneous Provinces have been occurred over a short time interval (e.g. 0.5 Myr). Taking into account the results of palaeointensity estimations for the same samples, which shown the extremely weak geomagnetic field, the hypothesis of the «hyperactivity» of the field with a frequency of at least 12 reversals per one million years on the end of the Ediacaran gain the additional confirmation.

References

Bakhmutov, V.G., Poliachenko, I.B., Cherkes, S.I., Shcherbakova, V.V., & Hlavatskyi, D.V. (2021). Palаeomag-netism of the Vendian traps of Volyn, southwestern margin of the East European platform. P. 1: palаeo-magnetic directions and poles. Geofizicheskiy Zhurnal, 43(6), 70—119. https://doi.org/10.24028/gzh.v43i6.251555 (in Russian).

Baksi, A.K. (2012). «New 40Ar/39Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: Implica-tions for duration of flood basalt eruption episodes» by Barry et al. (2010) — Discussion. Lithos, 146—147, 293—299. https://doi.org/10.1016/j.lithos.2011.11.026.

Barry, T., Self, S., Kelley, S.P., Hooper, P., Reidel, S.P., Hooper, P., & Widdowson, M. (2010). New 40Ar/39Ar da-ting of the Grande Ronde lavas, Columbia River Basalts, USA: implications for duration of flood basalt eru-tion episodes. Lithos, 118, 213—222. https://doi.org/10.1016/j.lithos.2010.03.014.

Bazhenov, M.L., Levashova, N.M., Meert, J.G., Golovanova, I.V., Danukalov, K.N., & Fedorova, N.M. (2016). Late Ediacaran magnetostratigraphy of Baltica: Evidence for Magnetic Field Hyperactivity? Earth and Plane-tary Science Letters, 435, 124—135. https://doi.org/ 10.1016/j.epsl.2015.12.015.

Bogdanova, S.V., Bingen, B., Gorbatschev, R., Khe-¬ras¬kova, T.N., Kozlov, V.I., Puchkov, V.N., & Volozh, Y.A. (2008). The East European Craton (Baltica) before and during the assemb¬ly of Rodinia. Precambrian Re-search, 160(1-2), 23—45. https://doi.org/10.1016/j.precamres. 2007.04.024.

Bono, R.K., Tarduno, J.A., Nimmo, F., & Cottrell, R.D. (2019). Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nature Geoscience, 12, 143—147. https://doi.org/10.1038/s41561-018-0288-0.

Bryan, S.E., & Ernst, R.E. (2008). Revised definition of Large Igneous Provinces (LIPs). Earth Science Reviews, 86, 175—202. https://doi.org/ 10.1016/j.earscirev.2007.08.008.

Chadima, M., & Hrouda, F. (2006). Remasoft 3.0: a user-friendly paleomagnetic data browser and analyzer. Travaux Géophysiques, XXVII, 20—21.

Coe, R., & Glatzmaier, G. (2006). Symmetry and stability of the geomagnetic field. Geophysical Research Let-ters, 33, L21311. https://doi.org/10.1029/2006GL027903.

Compston, W., Sambridge, M.S., Reinfrank, R.F., Moczydeowska, M., Vidal, G., & Claesson, S. (1995). Numerical ages of volcanic rocks and the earliest faunal zone within the Late Precambrian of east Poland. Journal of the Geological Society, 152(4), 599—611. https://doi.org/10.1144/gsjgs.152.4.0599.

Driscoll, P., & Olson, P. (2009). Polarity reversals in geodynamo models with core evolution. Earth and Plane-tary Science Letters, 282(1-4), 24—33. https://doi.org/10.1016/j.epsl.2009.02.017.

Driscoll, P.E. (2016). Simulating 2Ga of geody¬na¬mo history. Geophysical Research Letters, 43(11), 5680—5687. https://doi.org/10.1002/ 2016gl068858.

Elming, S.A., Glevasskaya, A.M., Mikhailova, N.P., Rusakov, O.M., Kravchenko, S.N., Layer, P. & Bachtadse, V. (2007). Palaeomagnetism and 40Ar/39Ar age determinations of the Ediacaran traps from the southwestern margin of the East European Craton, Ukraine: relevance to the Rodinia break-up. Journal of the Geologycal Society, 164(5), 969—982. https://doi.org/10.1144/0016-76492005-163.

Gallet, Y., & Pavlov, V. (1996). Magnetostratigraphy of the Moyero river section (north-western Siberia): con-straint on the geomagnetic reversal frequency during the early Paleozoic. Geophysical Journal Internation-al, 125(1), 95—105. https://doi.org/10.1111/j.1365-246x.1996.tb06536.x.

Glatzmaier, G.A., & Roberts, P.H. (1995). A three-dimensional self-consistent computer simulation of a geo-magnetic field reversal. Nature, 377, 203—209. https://doi.org/10.1038/377203a0.

Glevasskaya, A.M., Kravchenko, S.N. & Kosovskiy, Y.A. (2006). Magnetostratigraphy of the trap formation of the southwestern margin of the East European Platform. Geofizicheskiy Zhurnal, 28(5), 121—130 (in Rus-sian).

Glevasskaya, A.M., Mikhailova, N.P. & Kravchenko, S.N. (2000). Magnetostratigraphy of trappean formation of the East-European platform. Geofizicheskiy Zhurnal, 22(2), 3—18 (in Russian).

Gozhik, P.F. (Ed.). (2013). Stratigraphy of Upper Proterozoic and Phanerozoic of Ukraine (Vol. 1). Stratigraphy of Upper Proterozoic, Paleozoic and Mesozoic of Ukraine. Kyiv: Logos (in Ukrainian).

Hollerbach, R., & Jones, C.A. (1993). Influence of the Earth‘s inner core on geomagnetic fluctuations and rever-sals. Nature, 365, 541—543. https://doi.org/10.1038/365541a0.

Hollerbach, R., & Jones, C.A. (1995). On the mag¬netically stabilizing role of the Earth‘s inner core. Physics of the Earth and Planetary Interiors, 87(3-4), 171—181. https://doi.org/10. 1016/0031-9201(94)02965-e.

Iglesia Llanos, M.P., Tait, J.A., Popov, V., & Abal¬massova, A. (2005). Palaeomagnetic data from Ediacaran (Ven-dian) sedinemts of the Arkhangelsk region, NW Russia: an alternative apparent polar wander path of Bal-tica for the Late Proterocoic-Early Palaeozoic. Earth and Planetary Science Letters, 240(3-4), 732—747. https://doi.org/10.1016/j.epsl.2005.09.063.

Iosifidi, A.G., Bachtadse, V., Khramov, A. & Kuznetsova, A. (2000). Palaeomagnetic data for Vendian basalts from Ukraine. 3rd Internatio¬nal Conference on Problems of Geocosmos, Abstracts Volume, St. Petersburg (pp. 74—75).

Krzemińska, E., Poprawa, P., Pacześna, J. & Krzemiński, L. (2022). From initiation to termination: The evolu-tion of the Ediacaran Volyn large igneous province (SW East European Cra¬ton) constrained by compara-tive geochemist¬ry of proximal tuffs versus lavas and zircon geochronology. Precambrian Research, 370, 106560. https://doi.org/10.1016/j.precamres. 2022.106560.

Kuzmenkova, O.F., Shumlyanskyy, L.V, Nosova, A.A., Voskoboynikova, T.V., & Grakovich, I.Y. (2011). Petrology and correlation of trap formations of the Vendian in the adjacent areas of Belarus and Ukraine. Litasfiera, 35(2), 3—11.

Landeau, M., Aubert, J., & Olson, P. (2017). The signature of inner-core nucleation on the geodynamo. Earth and Planetary Science Letters, 465, 193—204. https://doi.org/10.1016/j.epsl. 2017.02.004.

Levashova, N.M., Bazhenov, M.L., Meert, J.G., Danukalov, K.N., Golovanova, I.V., Kuznetsov, N.B., & Fedo-rova, N.M. (2015). Paleomagnetism of upper Ediacaran clastics from the South Urals: Implications to paleogeography of Baltica and the opening of the Iapetus Ocean. Gondwana Research, 28(1), 191—208. https://doi.org/10.1016/j.gr.2014.04.012.

Levashova, N.M., Golovanova, I.V., Rudko, D.V., Danukalov, K.N., Rudko, S.V., Yu, S.R. & Meert, J.G. (2021). Late Ediacaran magnetic field hyperactivity: quantifying the reversal frequency in the Zigan Formation, South-ern Urals, Russia. Gondwana Research, 94, 133—142. https://doi.org/10.1016/j.gr.2021.02.018.

Llanos, M.P.I., Tait, J.A., Popov, V. & Abalmassova, A. (2005). Palaeomagnetic data from Ediacaran (Vendian) sediments of theArkhangelsk region, NW Russia: an alternative apparent polar wander path of Baltica for the Late Proterozoic—Early Palaeozoic. Earth and Planetary Science Letters, 240(3-4), 732—747. https://doi.org/10.1016/j.epsl.2005.09.063.

Meert, J.G., Levashova, N.M., Bazhenov, M.L., & Landing, E. (2016). Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Research, 34, 149-157. https://doi.org/10.1016/j.gr.2016.01.001.

Melnychuk, V.G. (2010). Evolutionary model of Early Vendian trap magmatism in the southwestern part of the Eastern European platform. Heolohichnyi Zhurnal, (1), 77—85 (in Ukrainian).

Nawrocki, J., Bogutsky, A., & Katinas, V. (2010). New Late Vendian palaeogeography of Baltica and the TESZ. Geological Quarterly, 48(4), 309—316.

Nosova, A.A., Veretennikov, N.V., & Levskii, L.K., (2005). Nature of the mantle source and specific features of crustal contamination of Neoproterozoic flood basalts of the Volhynia Province (Nd-Sr Isotopic and ICP-MS Geochemical Data). Doklady Earth Sci., 401(3), 429—433.

Nosova, A.A., Kuz’menkova, O.F., Veretennikov, N.V., Petrova, L.G., & Levsky, L.K. (2008). Neoproterozoic Volhynia—Brest Magmatic Provincein the Western East European Craton: Within-Plate Magmatism in an Ancient Suture Zone. Petrology, 16(2), 105—135. https://doi.org/10.1134/S086959110802001X.

Opdyke, N.D., & Channell, J.E.T. (1996). Magnetic stratigraphy. Academic Press, 346 p.

Paszkowski, M., Budzyń, B., Mazur, S., Sláma, J., Shumlyanskyy, L., Środoń, J., Dhuime, B., Kędzior, A., Liivamägi, S., & Pisarzowska, A. (2019). Detrital zircon U-Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, Belarus. Precambrian Research, 331, 105352. https://doi.org/10.1016/j.precamres.2019.105352.

Paszkowski, M., Budzyń, B., Mazur, S., Sláma, J., Śro¬doń, J., Millar, I.L., Shumlyanskyy, L., Kęd¬zior, A., & Liivamägi, S. (2021). Detrital zircon U-Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, part II: Ukraine. Pre-cambrian Research, 362, 106282. https://doi.org/10.1016/j.precamres.2021.106282.

Pavlov, V.E., & Gallet, Y. (1998). Upper Cambrian to Middle Ordovician magnetostratigraphy from the Ku-lumbe river section (northwestern Siberia). Physics of the Earth and Planetary Interiors, 108(1), 49—59. https://doi.org/10.1016/S0031-9201(98)00087-9.

Pavlov, V., & Gallet, Y. (2005). A third superchron during the Early Paleozoic. Episodes, 28(2), 78—84. https://doi.org/10.18814/epiiugs/2005/v28i2/001.

Popov, V., Iosifidi, A., Khramov, A., Tait, J., & Bachtadse, V. (2002). Paleomagnetism of Upper Vendian sediments from the Winter Coast, White Sea region, Russia: Implicati¬ons for the paleogeography of Baltica during Neoproterozoic times. Journal of Geophysical Research, 107(B11), 2315. https://doi.org/10.1029/ 2001jb001607.

Popov, V.V., Khramov, A.N, & Bachtadse, V. (2005). Palaeomagnetism, magnetic stratigraphy, and petromag-netism of the Upper Vendian sedimentary rocks in the sections of the Zolotitsa River and in the Verkhoti-na Hole, Winter Coast of the White Sea, Russia. Russian Journal of Earth Sciences, 7(2), 115—143. https://doi.org/10.2205/2005ES000167.

Poprawa, P., & Pacześna, J. (2002). Late Neoproterozoic to Early Paleozoic development of a rift at the Lublin-Podlasie slope of the East European Craton — analysis of subsidence and facies record. Przegląd Geologiczny, 50, 49—61 (in Polish).

Poprawa, P., Krzemińska, E., Pacześna, J., & Amstrong, R. (2020). Geochronology of the Volyn volcanic com-plex at the western slope of the East European Craton — relevance to the Neoproterozoic rifting and the break-up of Rodinia/Pannotia. Precambrian Research, 346, 105817. https://doi.org/10.1016/j.precamres. 2020.105817.

Roberts, P. & Glatzmaier, G. (2001). The geodynamo, past, present and future. Geophysical & Astrophysical Flu-id Dynamics, 94(1-2), 47—84. https://doi.org/10.1080/03091920108204131.

Shcherbakova, V.V., Bakhmutov, V.G., Thallner, D., Shcherbakov, V.P., Zhidkov, G.V., & Biggin, A.J. (2020). Ultra-low palaeointensities from East European Craton, Ukraine support a globally anomalous palaeomagnetic field in the Ediacaran. Geophysical Journal International, 220, 1920—1946. https://doi.org/10.1093/gji/ggz566.

Shumlyanskyy, L., & Derevska, K. (2001). The first Sm-Nd and Rb-Sr isotope-geochemical data regarding Vendian basalts of the Volyn region. Naukovi Pratsi Instytutu Fundamentalnykh Doslidzhen, 4, 67—75 (In Ukrainian).

Shumlyanskyy, L., & Andréasson, P-G. (2004). New geochemical and geochronological data from the Volyn Flood Basalt in Ukraine and correlation with large igneous events in Baltoscandia. GFF, 126, 85—86.

Shumlyanskyy, L.V., Andréasson, P.-G., Melnychuk, V.G., & Derevska, K.I. (2006). Age of formation of the basalts of the Volynian flood basalt province: preliminary results of investigation of investigation of zircons be secondary on microprobe facility. Geokhimiya ta rudoutvorennya, 24, 21—29 (in Ukrainian).

Shumlyanskyy, L.V., Andréasson, P.-G., Buchan, K.L., & Ernst, R.E. (2007). The Volynian flood basalt province and coeval (Ediacaran) magmatism in Baltoscandia and Laurentia. Mineralogical Journal, 29(4), 47—53 (in Ukrainian).

Shumlyanskyy, L.V. (2012). Evolution of the Vendian continental flood basalt volcanism in the Volyn. Miner-alogical Journal, 34(4), 50—68 (in Ukrainian).

Shumlyanskyy, L., Nosova, A., Billström, K., Söderlund, U., Andréasson, P.-G., & Kuzmenkova, O. (2016). The U—Pb zircon and baddeleyite ages of the Neoproterozoic Volyn Large Igneous Province: implication for the age of the magmatism and the nature of a crustal contaminant. GFF, 138(1), 17—30. https://doi.org/10.1080/11035897.2015.1123289.

Soldatenko, Y., El Albani, A., Ruzina, M., Fontaine, C., Nesterovsky, V., Paquette, J.-L., Meunier, A. & Ovtcharova, M. (2019). Precise U-Pb age constrains on the Ediacaran biota in Podolia, East European Platform, Ukraine. Scientific Reports, 9, 1—13. https://doi.org/10.1038/s41598-018-38448-9.

Środoń, J., Kuzmenkova, O., Stanek, J.J., Petit, S., Beaufort, D., Gilg, H.A., Liivamagi, S., Goryl, M., Marynowski, L., & Szczerba, M. (2019). Hydrothermal alteration of the Ediacaran Volyn-Brest volcanics on the western margin of the East European Craton. Precambrian Research, 325, 217—235. https://doi.org/10.1016/j.precamres.2019.02.015.

Storey, M., Duncan, R.A., & Tegner, C. (2007). Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hotspot. Chemical Geology, 241(3-4), 264—281. https://doi.org/10.1016/j.chemgeo.2007.01.016.

Tarling, D.H., & Hrouda, F. (1993). The Magnetic Anisotropy of Rocks. London, Glasgow, New York, Tokyo, Melbourne, Madras: Chapman & Hall. https://doi.org/10.1017/s0016756800021543.

Thallner, D., Shcherbakova, V.V., Bakhmutov, V.G., Shcherbakov, V.P., Zhidkov, G.V., Poliachenko, I.B., & Big-gin, A.J. (2022). New palaeodirections and palaeointensity data from extensive profiles through the Edia-caransection of the Volyn Basalt Province (NW-Ukraine). Geophysical Journal International, 231(1), 474—492. https://doi.org/10.1093/gji/ggac186.

Valet, J.-P., Kidane, T., Soler, V., Brassart, J., Courtillot, V., & Meynadier, L. (1998). Remagnetization in lava flows recording pretransi¬ti¬onal directions. Journal of Geophysical Re¬search, 103(B5), 9755—9775. https://doi.org/10.1029/ 97JB03544.

Velikanov, V.A., & Korenchuk, L.V. (1997). Phases of magmatism and their relationship with sedimentation in the Late Precambrian (Riphean—Vendian) of Volyn-Podolia. Geologicheskiy Zhur¬nal, (1-2), 124—130 (in Russian).

Vella, J., Carlut, J., Valet, J.P., Le Goff, M., Soler, V., & Lopes, F. (2017). Remagnetization of lava flows spanning the last geomagnetic reversal. Geophysical Journal International, 210(2), 1281—1293. https://doi.org/10.1093/gji/ggx212.

Downloads

Published

2023-02-22

How to Cite

Bakhmutov, V. ., Poliachenko, I. ., Cherkes, . S. ., & Hlavatskyi, D. . (2023). Palaeomagnetism of the Vendian traps of Volyn, southwestern margin of the East European Platform, P. 2: magnetostratigraphy. Geofizicheskiy Zhurnal, 44(6), 3–23. https://doi.org/10.24028/gj.v44i6.273638

Issue

Section

Articles