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Geometrical shape of the detonation front and
instability of the detonation in a round tubek

Viktor Volkov

Abstract Stability problem is solved analytically for the plane detonation
wave propagating in a round tube. Geometrical shape (cell structure) of the
detonation front, which is a result of instability development, is substantiated

mathematically.
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It’s known from classical experiments that the detonation waves in explo-
sive gases organize themselves in an unsteady spatial structure (Fig.1.) as a
result of instability development. The most interesting regimes are the “spin”
(Fig.2) and “gallop”, which are typical for detonations of some kinds of mixtures
in cylindrical tubes. Those regimes arise probably in mixtures forming unsafe
situations in industrial enterprises. Although the processes of the cell forming
for the multifront detonations and near-critical regimes are investigated thor-
oughly in copious experiments and described in literature repeatedly, the full
consistent theory for those phenomena is not built yet. The purpose of present
work is to analyze mathematically critical regimes of gaseous detonation from
the standpoint of the small perturbation theory.
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Fig.1. A sample of the cellular detonation surface (photograph of the imprints

on the sooty tube butt-end; detonation of mizture 2Ho + Oo under initial

pressure 300 mm Hy)

Fig.2. Photograph of the single-head (“spin”) detonation in gas mixture.

Photographing was done through a slot, which was parallel to the tube axis

The reason for the appearance of the detonation front nonuniformities is the
developing of instability of the one-dimensional complex “shock wave — chemical
reaction zone ”, explored experimentally, analytically and numerically. As a result
on the non-linear stage the detonation front surface is covered by cells of a
characteristic size dependent on the initial pressure and chemical properties of
the explosive gas mixture. The numerical and analytical estimates for the mean
size of the detonation front nonuniformities were obtained by solving a stability
problem of a double-front shock-detonation complex. Thus, distortion of the
detonation front and the origin of fractures on it (triple point configurations) was
attributed to the two-dimensional instability and the development of the fastest

growing perturbations. The method of instability analysis as well as the analysis



DOI 10.1 5673/2072—981 2.3/2014.40227
16 V. Volkov

of the detonation structure has allowed to take into account the continuous
variation of physical and chemical parameters in the course of energy deposition
behind a shock front. Moreover, this method has allowed to explain the possible
stability of detonation in condensed explosives. However, this stability theory
does not account the effect of confinement, whereas in reality the detonation
processes occur only in confined volumes. The study of stability and structure
of the self-sustaining detonation wave propagating in a cylindrical tube is done
by us in [1]. The continuous variation of physical and chemical parameters in
the reaction zone behind the shock front is taken into account and essential
restrictions are not imposed either by the equation of chemical kinetics or by
thermal equation of state both for detonating substance and for the detonation
products.

The following mathematical model of a detonation is considered. Along a
z-axis, at z < 0 the inviscid gas moves at a stationary supersonic velocity.
Plane z = 0 corresponds to a shock wave. In the zone 0 < z < L chemical
transformations occur while zone z > L is occupied by the detonation products.
Physical parameters of explosive mixture, gas in the chemical transformation
zone and detonation products are related to each other by the conservation laws
of mass, momentum, and energy. Chemical reaction is assumed to be governed
by a single variable, unburnt mass fraction or progress variable, 5. At the shock
front, 8 = 1. At termination of chemical reaction, i.e., at z = L, § = (2 (0 <
B2 < 1). At § = B2 the flow velocity is equal to the local speed of sound
(Chapman-Jouget condition).

At z > 0 the flow field is governed by a set of gasdynamic equations and

equation of chemical kinetics:

’é—f + pdiv7 =0,

E—
pLt + gradp = 0
9 pu? . 7 pu? (1)
5t pE—‘rT +d’LU pE—&-p-i—T :0,

B = 1(8,p,p),

where 7 is the velocity vector, u? = 72, p is the density, is the pressure, is

the specific internal energy, and

E =e+ BQ, (2)

Q is the chemical energy source per unit mass of gas and e = e(p, p). For the

thermally perfect gas:
L p
e = ——= + const, 3
po— (3)
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where +y is the ratio of thermal specific heats.

Function f in the equation of chemical kinetics is assumed to be sufficiently
smooth (as well as function e (p, p), expressing the thermal equation of state).
The explosive gas flows in a round cylindrical tube of radius rg, therefore Egs.
(1) should be formulated in a cylindrical frame of reference.

Let us investigate the stability of the basic solution of Egs. (1) in relation to

small perturbations u, u;z, p;., p;», ﬂ; corresponding to radial, tangential

jro Ui
and axial components of a velocity vector, pressure, density and progress vari-
able, in the reaction zone (j = 1) or in the detonation products (j = 2), assuming
that ﬁ; = 0. As a result the following linearized equations can be obtained from

Egs. (1):

o ’ 1o
p”-i-aZ(pu +ujpj)+p;{(m ) o B }:O7

1 ap.} _
8 pj Or 0,
au 1 op;
Ui op; _
tu Uj Bz p;r Op 0,
!’
Bu 1 Bp] 1 dp]
g, ) + g - ,TJ.*PJ =0, (4)

Bp/ 1 ap, u, Op,
pi( +u; G ) +uGEp; + 5+ oG, Dot T or = or T

Iy, J 9 op, dug ) —
+WJ—1)TZJP]’ pQ(iyj—l)( J—|— Uj J_|_ au; ) 0,

og’ o | 4B’ _
o tUuipr tu JZ_quz< 6"' pj+0ppj)_07

s [(3),0)

In the particular case of thermally perfect gas, 7; is the ratio of specific heats.

where

The solutions of Egs. (4) should obey to the condition:

Uiy lr=re=0, (6)
and the condition of regularity at » — 0. In view of it, the solution is taken in
the form .

ylj(z) (7" b2 )7
Us = yQJ(Z)TOé_nk dran (fnkTTO )F(Tv%t);
u,; y3](2)7‘ nknF(T o, t); (7)
B — g (P (0, )
= =ysi(2)F(r,0,1);

~

= :‘/GJ(Z)F(T @,t),
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where
F(r,p,t) = exp (wro_lugt + ingp) Jn (fnkrr(?l) , (8)

and w — a complex value (dimensionless eigenvalue), n is the azimuthal wave
number (n = 0,1,2,...), J,(§) is the cylindrical functions of the 1-st kind of
order n, &, is the k th root of the equation dJ,(£)/d¢ =0, y;r (k=1,...,5) —
dimensionless function of z.

For the Chapman-Jouget detonation (ug = asg, i.e. My = 1, where My = Z—i
is the Mach number, 5 is the speed of sound in the detonation products) the
functions yor(k = 1,...,4) are determined to be the solutions of system of the
linear homogeneous differential equations with constant coefficients and contain
three uncertain constants Ag (1,2, 3).

The equations of the perturbed shock front and the surface of chemical re-

action termination are set as
z=ei(r,p,t), z=L+ea(rpt), 9)

where
gj = AojroF (¢, ). (10)

In the linear approximation, the laws of conservation of mass, momentum, energy

and unburnt mass fraction at the shock front (z = 0) are given by

ulpll + p1ullz = (Pl - pO)%v

u,l,. = (uo - Ul)%;

g = 7 (o —ur) 5,

p1+udp) + 2p1uauy, =0, (11)

(v = 1)p1 = (0 + Dpolpy + [(m — Dp1 + (0 + Lpo] +
+py +2(m - 1)Q2 B =0,
ﬁ/ + 61% = 07

where index 0 denotes parameters of a unperturbed stream at z < 0.

As the perturbations behind shock front are continuous everywhere along the
tube, the requirements of a continuity of all parameters at the perturbed surface
of the chemical reaction termination should be used.

After simple transformations one arrives at the following boundary value

R(0) = Ro,
B(1) = B, (12)
2~ GEE,

problem:
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with

F(0) = Ar (ﬁg” n wﬁg%), (13)
B(m) = 5% _ Aq KO, (14)

G(z) = GW(2) +wG?(2), (15)
7=, (16)

Y11

Y12
<y13>, (17)

Y14

Y15

where G is the 5 X 5 matrix.

It is rather difficult to find a precise solution of the system of ordinary lin-
ear homogeneous differential equations with variable coefficients. Therefore, the
boundary value problem (13) is solved approximately [1] by the Euler method.
As a result, one arrives at the equation for definition of eigenvalues

F(w) =0, (18)

where function F'(w) represents a polynomial of m+5 order, where m the number
of intervals in Euler method. If this equation has a solution with a positive real
part, it is evidence of the detonation wave instability. The eigenvalue w is, in
general, the complex function of parameter &,,.

Calculating of the pulsation structure of detonation waves is based on the
discrete spectrum of values &, satisfying a boundary condition (6), it is possible
to choose the eigenvalues w (§,x), providing the fastest growth rate of pertur-
bation amplitude, and therefore the maximal distortion of the front. &,; value
corresponds these eigenvalues almost always. Thus it is possible to calculate the
mean size of nonuniformities (cells) in the detonation wave propagating in an ex-
plosive gas. Particular calculations were performed for mixtures 2Hy + Oy + 7TAr
and 2Hs + Oz + 7. He with the kinetics of [2] and are compared to results of
experiments [3] - [5] and numerical analysis [2], [6]. The agreements between the
present analysis and experimental data can be treated as satisfactory.

For the formation of the detonation structure, parameter
§=1Lryt, (19)

which shows the ratio of the reaction zone width to the tube radius is the most
important one. Increase of the tube radius r¢ or decrease of the reaction zone
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width L (that is possible, for example, when the explosive gas pressure o increases
or the inert additions) leads to decrease of 4.

For the thermally perfect gas with the model kinetics [2] if 6 > 0.5 the
instability takes place only for n = 0. But in this case {y; = 0, and it contra-
dicts (7), and the case, corresponding to £y = 3.83 is realised. Absence of the
dependance of perturbations from ¢ means, that gas produces radial acoustic
oscillations. But under n = 0, y; = 0 it is necessary to go over to another (one-
dimensional) stability problem. This problem is solved by us before [1] and the
instability of the gaseous detonations to the one-dimensional perturbations is
proved. Developing of such instability may be accepted for theoretical explana-
tion of the galloping detonation regime [5]. At the non-linear stage of developing
one-dimensional (axial) and radial perturbations will interact. The result of such
interaction is non-one-dimensional character of the detonation “gallop”, that is
observed in experiments [5].

If 0.3 < 6 < 0.5 instability develops under n = 1, &7 = 1.84, which corre-
sponds to the single-head spinning detonation (Fig.2) [4], [5]. If 0.1 < ¢ < 0.3
instability develops under n = 2, £3; = 3.05, which corresponds to the double-
head spinning detonation [4], [5]. And so on, as ¢ decreases, n increases, that

means existence of the multi-head spin, i.e. cell structure of detonation (Fig.1).
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