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On mim-spaces
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Abstract The notion of idempotent measure is a counterpart of that of
probability measure in the idempotent mathematics. In this note, we consider
a metric on the set of compact, idempotent measure spaces (mim-spaces) and

prove that this space is separable and non-complete.

Keywords idempotent measure, probability measure, mm-space

Mathematics Subject Classification (2010) 54C35, 54E35, 60B05

1 Introduction

The notion of metric measure space (i.e., a space endowed with a measure;
briefly, mm-space) plays an important role in different parts of mathematics.
This notion also has numerous applications in computer science, in particular,
in computer vision.

The notion of probability measure has its counterpart in the idempotent
mathematics; the latter is a part of mathematics in which the usual arithmetic
operations are replaced by idempotent ones (e.g., max). Namely, in [3] there
were defined the idempotent measures (called also Maslov measures).

In this note, we introduce the notion of metric, idempotent measure space
(briefly, mim-space). Recently, there were defined the so-called idempotent frac-
tals as (ultrametric) spaces endowed with idempotent measures [4]; they can be
considered as natural examples of mim-spaces.

We define a metric on the set of all compact mim-spaces and prove that the

obtained space of mim-spaces is a separable noncomplete space.
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2 Preliminaries

We begin with the notion of idempotent measure and space of idempotent mea-
sures (see [6] for details).

Let (M,d) be a compact metric space. As usual, by C(M) we denote the
Banach space of continuous functions on M (with the sup-norm). Given A €
R, by Ay we denote the constant function in C(M) equal to A. Consider the

following operations:

O:RXC(M)—=C(M): (A p)—= Ay +
@:C(M)xC(M)—=C(M): (¥,p) = max{y), o}

A functional p: C(M) — R is called an idempotent measure if it satisfies the
following properties:

L plem) = ¢
2. lc® @) =cOpu(p);
3. u( @ w) = p(y) @ p(yp).

Consider some examples of idempotent measures. For any x € M, we denote
by 0, the Dirac measure concentrated at z, i.e. 6;(¢) = ¢(z), ¢ € C(M). Clearly,
0. € I(M). More generally, given z1,...,2, € M and Aq,...,\, € R such that
max{A1,..., A} =0, one can define = ®?_ | \; © d,, € I(M).

Denote by I(M) the set of all idempotent measures on M. We consider the
weak*-topology on I(M); the base of this topology consists of the sets

(301, spnye) ={v € I(M) | |u(pi) —v(pi)| <e, i=1,...,n},

where p € I(M), p; € C(M),i=1,...,n,e>0.

Let p € I(M). The support of p is a minimal (with respect to inclusion)
closed set A in M such that u(¢) = () whenever ¢, € M(X) and p|A = | A.
We denote the support of u by supp(y').

Given a map f: M — M’ of compact metric spaces, we define a map

I(f): I(M) — I(M’) by the formula I(f)(u)(p) = pl(ef), p € I(M), ¢ €
C(M'"). In particular, if = @7 1 \; © 05, € I(M), then

I(f)(“) =® O 5f(fri) S I(M/).

We thus obtain a functor I on the category of compact metrizable spaces and
continuous maps [6].

The following is proved in [1].
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Proposition 1 If f: X — Y is a non-ezpanding map, then I(f): I(X) — I(Y)

s also a non-expanding map.

By exp X we denote the set of nonempty compact subsets in a metric space
(X, d) (the hyperspace of X). The Hausdorff metric dy on exp X is defined by

the formula:
dy(A,B)=inf{e >0]| AC O.(B), BC O.(A)}, A,B € exp X.

The Gromov-Hausdorff distance between compact metric spaces X; and Xo

is defined as follows:

dor (X1, Xo) = inf{du (f1(X1), f2(X2)) | fi: Xi = Z, i =1,2,

is an isometric embedding into a metric space Z}
(see, e.g., [2])-
3 mim-spaces

Here we introduce the notion of mim-space.

Definition 1 A mim-space is a triple (M, d, i), where

1. (M,d) is a metric space;
2. p is an idempotent measure on M;
3. supp(u) = M.

We say that mim-spaces (M, d, u) are (M’,d’, u") isomorphic, if there exists
an isometry f: My — M| such that
Yxp=p.
By [(M,d, )] we denote the class of all mim-spaces isomorphic to (M,d, i)
mim-spaces. Denote M = {[(M,d, )] | (M,d, ) is an mim-space}.
In order to simplify notation we will identify every mim-space (M,d, ) and
the class [(M,d, 1)]. This allows us to interpret M as a set.

Let us define a metric on M. First, we recall the definition of the metric on
M(X) (see [1]). A function ¢: M +— R is called n-Lipschitz, if

lo(x) — e(y)| < nd(z,y), =,y € X.

Let n € N. It is known (see [1]) that the function d,: I(M) x I(M) — R
defined by the formula

dn (11, v) = sup{|u(p) — v(¢) || ¢ is n-Lipschitz }
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is a continuous pseudometric on the space I(M).
The metric d on M is defined by

Let

L, (M) - {@?:1>‘i®5mi

Ay A € R max{Ay,..., A\ =0,21,...,2, € M, n € N}.

In other words, I,,(M) consists of elements of finite support in I(M). It is known
(see [6]) that the set I, (M) is dense in the space I(M).

4 Metric on the set of mim-spaces
Let (M;,d;, i), i = 1,2, be mim-spaces. Consider the function

D((M, dy, ) (Ma, da, p12)) = inf {d(I(f2) (1), 1(£2)(122)) |
fi: M; — Z is an isometric embedding}

on the set M.

We first remark that D is a well-defined function on M x M. To this end,
we have to show that the set from the right side of the formula defining D is
nonempty.

Indeed, let M = M7 x M5 and d be the metric on M defined by the formula
d((z1,22), (y1,92)) = di(x1,y1) +d2(z2,y2). Let m? € M;, i = 1,2. Define maps
fi: M; — M, i=1,2, by the formula f;(x) = (z,m3), f2(y) = (m?,y). Clearly,

f1, fo are isometric embeddings.
Theorem 1 The function D is a metric on M.

Proof Nonnegativity and symmetry of D are obvious.

We are going to prove mnondegeneracy of D. Suppose that
D((Mi,dy, p1)(Mz,d2, p2)) = 0. Then for every natural n there exists a
compact metric space (Z,,0,) and isometric embeddings g,: My — Z,,
h,: My — Z, such that

lim g, (1(gn)(11), 1 (hn)(p2)) = 0.

n—oo

Without loss of generality, one may assume that Z, = M U M/, and g, is
the inclusion map. Also, we assume that M] N M = () whenever i # j. Define
H=UX,2,.
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Define ¢9: H x H — R as follows:

Qi(‘ray)7 if T,y € Zia

o(z,y) =
inf{o;(x,a) + 0i(a,y) |a€ Z}, faxeZ, yeZ, i#].

It is not difficult to show that o is a metric on H and Z,, is a subspace of Z for
every n.

We are going to prove that Z,, — Z in the hyperspace exp H. Suppose the
contrary. Without loss of generality, one may assume that there exists ¢ > 0
and a nonempty open subset U of My such that h,(U) lies in the complement
of the e-neighborhood of Z in H. Since supp(u2) = Ma, there exists a function
¢ € C(M3) such that supp(¢) C U and ps2(p) = ¢ # 0.

Define ¢: H — R as follows: ¢(z) = ¢h, (z) if z € Z, and ¥(x) = 0
otherwise. Then I(h,)(p2)(v) = ¢, for every n, and pi(yp) = 0. We therefore
obtain a contradiction.

Thus, Z, — Z in the hyperspace exp H and therefore H is compact. Let
{z; | i € N} be a dense set in M>. By induction, we construct monotonically
increasing subsequences S; D Sz D ... such that the sequence (h,(z;))nes;
is convergent. Denote its limit by y;. Clearly, the map x; — y;, ¢ € N, is an
isometry. It has a unique extension u: Ms — My, which is also an isometry such
that I(u)(pue) = p1.

Let us prove the triangle inequality. Suppose that (X, d;, p;), i = 1,2, 3, are

mim-spaces,
D((X1,dy, 1), (X2, d2, p2)) = a, D((X2,da, p2), (X3, ds, p3)) = b.
Given € > 0, find metric spaces (Y7, 01), (Y2, 02) and isometric embeddings
Ji: X =Y, for Xo = V1, f3: Xo = Yo, far X35 = Yo
such that
o(I(f1) (), I(f2) (ko)) < a+e, o(I(f3)(p2), I(fa)(ps)) <b+e.
Without loss of generality, one may assume that
Y1 = fi(X1) U fa(X2), Y2 = fs(X2) U fa(Xs).

Define Y = (Y1 UY3)/ ~, where the equivalence relation ~ is defined by the
condition: Y7 3 y ~ f3(f51(y)) €Ys. Let q: Y1 UYs — Y be the quotient map.
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Let a metric d on Y be defined by the conditions:
di(y7z)a if y,qu(fi(Xi)), 7= 1,27
d(y,z) = { inf{di(y,a) + da(a,2) | a € (Y1) Nq(Y2)}, ifye€q(¥1)\q(Ya),
z€q(Y2) \ ¢(V1).

It is easy to see that d is a metric on Y. Then

D((X1,d, ), (Xs,ds, p3)) < d(I(qf1)(p1), 1(afs)(us))
< d(I(afr) (), 1(afa)(p2)) + d(I(afa)(p2), T(afs)(ps))
= d(I(gf1) (), T(af2)(n2)) + d(I(qfs)(p2), T(q 1) (is))
= 01(I(f1) (), I(f2)(p2)) + 02(1(f3)(p3), I(fa)(13))

(here we used the fact that the functor I preserves isometries; this easily follows

from Proposition 1). Letting ¢ — 0, we are done.
The following statement is an immediate consequence of the definition.

Proposition 1 Let X1, X5 be closed subspaces of a metric space (Y,d). If
M1, p2 € I(Y)) then

D((supp(p1), p1, d|(supp(p1) x supp(p1)), (supp(p2), p2, d|(supp(pz) x supp(p2))))
< J(ula p2).

We say that an idempotent measure pu = @leai ® 6, is rational if o; € Q,

for every i =1,...,k.
Proposition 2 The space X of all mim-spaces is separable.
Proof We let
Y = {(X, u,d) | X is finite, d(X x X) C Q, u is rational}.

Let X = {z1,...,2x) and let d be a metric on X . For any ¢ > 0, one can find
a metric space Y = {y1,...,yr} (we will denote its metric by p) with rational
distances and such that dgy(X,Y) < e. Without loss of generality, one may
assume that X and Y are subspaces of a common metric space (we will denote
its metric by D) such that D(z;,y;) < ¢, for every i = 1,... k.

Given a rational p = &F ;a; ® &,,, define v = &F_ a; ® J,,. Let ¢, be an
n-Lipschitz function on Z. Then it is easy to see that |u(vn) — v(en)| < ne.
Therefore, d(p,v) < Y07 L& =¢.

n=1 n2m



DOI: http://dx.doi.org/10.15673/2072-9812.2/2015.51574
32 V. Brydun, A. Savchenko, M. Zarichnyi

Proposition 3 The space X is not complete.

Proof Consider a sequence of mim-spaces ((X;,d;, i1;))$2,, where:
1. X;={0,1,...,i} CR;
2. the metric d; on X; is inherited from R;
3. = @2200@ @ 0;, where ap = 0 and «; € (—00,0] is such that dA(pi,l,ui) <
27%: moreover, og > 1 > ....
In order to choose «y, @ > 0, by induction so that (3) is satisfied note that
limg 00 i1 ® (k ® ;) = pi—1. Note also that (3) and Proposition 1 imply that

D((Xio1, i1y prien)s (Xiy diy i) < d(pi1, i) < 270

Now we are going to show that the sequence ((Xj,d;, 1;))$2, is not conver-
gent. Suppose the contrary and denote the limit by (X, d, 1). Let C be an integer
number with C' > diam(X).

Without loss of generality, one may assume that X U (J;=, X; C Y, for some
metric space (Y, o), and the following are satisfied:

1. the metric d; on X; is inherited from Y
2. lim; 00 pt; = p (in the sense that lim;_, o 6(p;, ) = 0).

Let U denote the closed 1-neighborhood of X in Y. Clearly, the function
UV Y = R, ¥, (y) = o(y, X) is an n-Lipschitz function. For every i > C'+ 3 find
Jj(i) £ C+3 such that ;) € X; \U. Let n > —ac3 + 1 be a natural number.
Then p;(1n) > n + a;(;) and, since pu(v,) = 0, we see that

1
= n2n

n A+ Q)
n2mn

n+ oc43

>
n2m

O(pis 1) = |p(ehn)| =

This contradicts to the assumption that lim; ., u; = u-

Remarks

One can consider another metric on the space I(M), for a compact metric space
(M,d). Namely,

7 o dn M, v
(v) = ez, 2Y)

One can similarly prove that counterparts of the above results are also valid for

. v € I(M).

this metric.

It is known that the space of mm-spaces is complete and separable (see, e.g.,
[5]). We do not know, however, what is a geometric model for this space. The
same question is open also for the (completed) space of mim-spaces.

Another open problem is that of description of the elements of the completion
of the space M.
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