DOI 10.15673/2072-9812.2/2014.29622
Proc. Intern. Geom. Center 2014 2(7) 51-77 dw

The space generated by metric and torsion tensors,
derivation of Einstein-Hilbert equation

N.I. Yaremenko

Abstract This paper is devoted to the derivation of field equations in space
with the geometric structure generated by metric and torsion tensors. We also
study the geometry of the space are generated jointly and agreed by the metric
tensor and the torsion tensor. We showed that in such space the structure of
the curvature tensor has special features and for this tensor obtained analog
Ricci - Jacobi identity; was evaluated gap that occurs at the transition from
the original to the image and vice versa, in the case of an infinitely small
contours. We have researched the geodesic lines equation. We introduce the
tensor 7, which is similar to the second fundamental tensor of hypersurfaces
Y"1 but the structure of this tensor is substantially different from the case
of Riemannian spaces with zero torsion. Then we obtained formulas which
characterize the change of vectors in accompanying basis relative to this basis
itself in the small. Taking into considerations our results about the structure of
such space we derived from the variation principle the general field equations

(electromagnetic and gravitational).

Keywords Metric tensor, torsion tensor, curvature tensor, Ricci — Jacobi iden-
tity, geodesic equation, tangent bundle, covariant derivative, tensor densities,

affine transformation, principal homogeneous space
Mathematics Subject Classification (2000) 83C22 - 53D99 - 83C05
1 Introduction

In this paper we study the properties of the geometry of the space are generated

jointly and agreed by the metric tensor and the torsion tensor, so we investigate
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the spaces with connection in the presence of the metric tensor. We obtained
some results on the structure of the curvature tensor, considered the construction
of geodesic lines and an estimate of the gap that occurs when traversing the
contour of a parallelogram in these spaces.

The principle of least action (more correctly, the principle of stationary ac-
tion) is the basic variational principle of particle and continuum systems. Let
the starting point is the action, denoted S, of a physical system. It is defined as
the integral of the Lagrangian L between two instants of time - a functional of

the n generalized coordinates q which define the configuration of the system:

S(a(t)) = / " Lig(t), (),

t1
where the dot denotes the time derivative, and t is time. Mathematically the
principle is §S = 0, where § means a variation. In applications the statement
and definition of action are taken together:

5/;2 L(g(t), 4(t))dt = 0.

The action and Lagrangian both contain the dynamics of the system for all
times. The term "path" simply refers to a curve traced out by the system in terms
of the coordinates in the configuration space, i.e. the curve q(t), parameterized by
time. On the other hand, a Finsler manifold is a differentiable manifold together
with the structure of an intrinsic quasimetric space in which the length of any
rectifiable curve 7 : [a,b] — M is given by the length functional

t
sy = [ R+,
t1
where F(x, - ) is a Minkowski norm on each tangent space. It is obvious from
these definitions, that there is a connection between these two concepts, which
can be realized by Hamiltonian formalism. Thus any Riemannian space can be
regarded as Finsler manifold with the length functional: F? = g;;(x)dz’dz? and
so the geodesics of a Finsler manifold are geodesics of Riemannian space.

The geodesics of the space that are being studied in our work (with the
geometric structure generated by metric g;;(z) and torsion Sfj (x) tensors) are
different from geodesics of corresponding Riemann space (with g;;(x) ) and so
of geodesics Finsler manifold (with F? = g;;(z)dz'dz7).

The investigation of properties of metric spaces and affine connection spaces
began approximately at the beginning of the 20th century [6, 7], and continues
to develop so far [1-5, 7-16].
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The importance of this kind of research is due on the one hand the internal
logic of mathematical science bases itself [6, 7, 9, 13|, on the other applications
to problems in physics, analytical and theoretical mechanics [1, 12], the theory
of relativity [5, 14-16] continuum mechanics, cosmology [10]. Fairly well studied
Riemann spaces [9], because of the wealth of geometric properties, less explored
space with affine connection [3] and not sufficiently considered the most inter-
esting geometry, which is obtained by combining geometry and affine connection
generated by the metric tensor, and this is the subject of this work. From the
theory of spaces with affine connection is known that parallel displacement vec-
tor depends on pathways, that is, if the vector is parallel transported at the given
contour with his return to the starting point, we obtain the other vector than
the original (appears the gap). In the spaces, which are studied in this work, not

only holds a similar statement, but there are new properties of this gap.

In this spaces retain all the properties geometry of an affine space but appear
important features associated with the presence of the metric; the structure of
the curvature tensor has a specific characteristics, as well as an opportunity to
assess the gap that occurs at the transportation from the original to the image

and conversely in the case of an infinitely small contours.

The main objective of this work - the study of the geometric properties of the
space with affine connection that arise when it is immersed in a metric space,
that is to build the geometry from of two tensors - the metric and torsion; obtain

the field equations from variation principle in such spaces.

We remind that according to Albert Einstein proposal: the free falling grav-
itating massive bodies follow geodesic line. If we postulate this proposal we can
obtain some results of Newton theory as a consequence. We have another im-
portant assumption of Albert Einstein that the geodesic equation of motion can

be derived from the field equations for empty space.

Since, we believe that gravitational and electromagnetic fields are determined
geometric structure of empty space (torsion and curvature) so it is interesting

to have example about geometric sense of torsion.

Now, we discuss known one example about geometric sense of torsion. We
consider the surface S. At point A on S construct a tangent plane P. We choose
an arbitrary infinitesimal square ABCD in the plane P with vertex A. From point
A on the surface S will draw the geodesic in the direction of AB. We pass along
it the distance corresponding parameter equal to the length of AB, get to point
B’. Similarly, from A on S draw geodesic towards AD, get into D’. We perform
a parallel transportation of vector AD to point B’ along the geodesic AB’ and
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draw of geodesic B’ along the transportation of this vector, we reach the point
C’. Similarly, the vector AB will be move parallel along the AD’ and along the
transported vector from D’ draw geodesic get to C”. If torsion is zero, then C '=
C”; and geodesic square up to small higher-order will be closed, otherwise not.
In our case, due to the presence of the metric can calculate the length of the gap,

more precisely we can estimate the length of this gap.

These considerations are true only up to the second order relative to the
length of square side. If we want more strict result we must consider the compo-
nent of curvature tensor. Next this example is true only when length of square
side tends to zero i.e. remains very small in other words in general it is a local

property.

We go to discussion of physical interpretation this example. The physical
properties of the space-time (more just space) are defined by the presence of
matter (electromagnetic fields and mass) in this space and from the viewpoint
of mathematics are described by the geometrical structure of space (torsion and
metric tensors). The empty space (without matter) is corresponded the geometric
structure of Euclidean space (torsion tensor and curvature tensor are identically
equal to zero). Similarly gravitation (mass and without electromagnetic fields)
is corresponded the geometric structure of Riemannian space (torsion tensor is
identically equal to zero). And similarly the electromagnetism (electromagnetic
fields and without mass) in corresponded the geometric structure of affine con-
nection space (curvature tensor is identically equal to zero). In the last two cases
the result is conditional (not strict) because the matter division by the mass and

field is conditional.

We consider the following method of constructing space-time: the space is
constructed on the basis of manifolds by determining at this manifolds metric
tensor and torsion tensor. Metric and torsion tensors are calculated from the
differential equations of the field. Hence torsion as the curvature arises from
the physical features of the distribution of matter in space-time. Roughly, the
same way as the masses leads to curvature space-time, electromagnetism leads
to appearance of torsion. But on the other hand from the mathematical point
of view if we assume that the space-time embedded in Euclidean space of higher
dimension then the appearance of torsion can be explained by violation of the
smoothness embedding. Therefore, we can conditionally determine the torsion
and curvature by violation of smoothness regardless of the dimension and em-
bedment.
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The aim of our paper is to study the property of metric space with torsion
and obtain analog of Einstein-Hilbert equation at such space.

This paper is organized as follows. In Sect. 2 some general properties of
structure of a metric space with torsion are discussed.In Sect. 3 we present the
study of geodesics in the space with torsion. These results can be use in "geodesic
principle". In Sect. 4 is dedicated the theory of hypersurfaces in the space with
torsion. In Sect. 5 we obtained some interesting relationships which is using in
Sect. 6. In Sect. 6 we are derived analog of Einstein-Hilbert (for electromagnetic
and gravitational fields) in case of a metric space with torsion.

The main natural assumption that is used below that a scalar product of two
any vectors in parallel transport along an arbitrary path does not change. ing of
the 20th century [7, 8, 11-13], and continues to develop so far [1-5, 14-22].

2 Structure of a metric space with torsion

There are many ways to represent the physical four-dimensional space, where
events of our reality are occurring. From a mathematical point of view there are
two possible conceptions of space geometry, which might be identified with the
physical space.

The first scheme is a generalization of Euclidean geometry - the geometry
of the Riemannian metric, i.e. n-dimensional manifold equipped with a field
twice covariant symmetric metric tensor which is non-degenerate g;; (M), where
Det|g;x| # 0 and g;r. = gi;. Note that the metric tensor is chosen arbitrarily, but
in addition to conditions laid above we demand that manifold was sufficiently
smooth.

This definition can be rewritten as: invariant differential quadratic form
gix dr'dx* determined on the manifold and satisfying the conditions Det|g;x| #
0, gix = gii defines the geometry of Riemann.

As a consequence of the invariance of the form:
ds* = gy, da'da® (1)

we find that the coefficients g;; are forming a tensor field.

In this model for the arc length of the curve, you can take the integral:

b
s:/ vV gir dztdxh. (2)

The second scheme is a generalization of affine geometry - the geometry of
affine connection I'j, (M) that is based on n - dimensional manifold.
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The connection I'j; (M) is a geometric object on a manifold and is subjected

to the law of the transformation from one coordinate system z* to another

in the form of:

o 0a” Oud Ot PPat Oal )
Ik 9zt 9w Ok T Oz HxF dxt’

v
F;/k’ =

where the functions F;k are sufficiently smooth.
Let along the curve z° = z%(t), t € [a,b] C R given tensor fieldA® = A%(t), if

for each infinitesimal displacement tensor A’(t)coordinates is changing the law:
dA" = —T'j, Al da”, (4)

then we say that the tensor A’ is transported parallel to the curve t.

We are choosing one or another geometric model depending on the investi-
gated problem, but as the internal logic and common sense requires that in the
physical world, these two models coexist together and complement each other.
There is well-known result that in an arbitrary Riemannian space can always
construct a connectionF;k(M ). An interesting question is the uniqueness of such
a construction. In general, such a construction I, is not unique, but completely
natural (in terms of mathematics and physics to a greater extent), there is the
requirement that whenever along a path parallel to the simultaneous transport
of two vectors A® and B® (due to the presence of the transport is connected
defined), their scalar product does not change (the scalar product is defined

metric). Mathematically, this can be written as the vanishing differential:
d(gixA'B*) = 0. (5)

If we the requested coefficients I, are symmetric namely,I’j, = I';; then the
connectivity is uniquely defined using a metric.

Always below we would not require the symmetry of connection. And so if the
metric g;x is defined, then a geometric object F;k subject to certain requirements,
but still there is some arbitrariness in the choice of connectedness of the space,

namely we need to define a torsion tensor:
;kE j?k_[‘lzjv (6)

then the geometric object ij that is generated the connection is uniquely de-
termined.
Theorem 1. Suppose that a Riemannian space with the metric g;; and in this

space is given torsion tensor S;k— skew-symmetric. If demand d(g;xz A'B*) = 0
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for arbitrary A and B* then the connection (geometric object that defines it)
F]?k is uniquely defined.

Proof. It is pretty easy to see the truth of this statement itself, but for
further more importantly those symbols and values that relate to the nature of
the entered values.

We rewrite d(gix A'B*) = 0, as, (gix; — Gk L) — gim IY) A'Bkda! = 0 due
to the fact that, dA* = fF;lApdxl, where I/~ unknown coeflicients of connec-
tion — a geometric object and dz! are the differentials of coordinates of a point
under infinitesimal displacement along the path; g, = 22 gix- Since,A’, B, da!
— arbitrary, the equalities must be identity relative to A%, B¥, da!. By circular

permutation we obtain the system of equations:
Gik,l = Gmr L5 + Gim I3 s
Giik = gmilly + gim Ly s

kti = gmid i + grem I

Since the technique is similar to the classical, then we give formulas without

justification:
Gikd + Giik — Grti = 9mkSy + 9 Sik + Gim L + gmilj) s
where S[}' = I']l' — I is torsion tensor, and we have
Gim (L + 1) = Gika + Giik — Grii + Gem Sy + 9im Sk
IE 4+ T = " (gika + Guik — Gkt + GrmST + GimSEL) |

and complementing the obvious equation - definition I}, — I'; = S%;, we obtain:

1 . 1
Ij = 591” (Gl + Gi ke — 9kt + 9emST; + gimSiz) + 5551- (7)

Then we introduce the notation and from the last formula we see that

L
Py, = §gp (Gik + Giik — Gri.i) (8)
is geometric object.
P — 1 P 1 Pl m m
Lkl = §Skl + 59 (gkmsli + glmSki) (9)

is tensor.
The geometric object Ik, which generate connection space, is completely
determined by the tensorsg;; and S!}'. Therefore the connection I}, is the sum
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of a geometric object P}, which is composed of derivatives of the metric tensor

g, and tensor LY, is compiled of g;, and the tensorSy;, namely
Iy =Pl + L (10)

Remark 1. Tensor L}, represents the sum of two tensors: symmetric
297" (gkm ST + qimSyY) and torsion 157,
Remark 2. It is not difficult to prove the relation:
; )
Fé’l = 1gipug? = %W@, where g = det |gx|-
The next step in building a geometric theory is the consideration of the

parallel transport tensor-vector A?, which is given by:
dA' = —T7},APda’,

where the coefficients F;l is the connection of space.

As further arguments are similar to the classic and often repeated them, the
presentation of intermediate results will wear schematic character.

By a covariant derivative of u; with respect to [ we mean:

— k i 0 i,k
U] = Ugl — FHU/k7u;l = 'U,J —|—Fklu .

Then we consider the difference:

k
Uil — Ulys = gl — Ul — Sy U

During the transition along a parallelogram in the image to the original
polygon is formed the gap Z* (breaking the circuit), which can be estimated as
follows, up to the 2-nd order of smallness relative to sides of a parallelogram:

ZF = SEA'BIT?,

It is the result of coagulation at the torsion tensor with vector - parties A‘r
and BT that express geodetic displacement. The basic geometric meaning of
the torsion tensor is an estimate of the gap (up to 2nd order) at which the open
loop shrinks, if the torsion is zero, then the gap will not infinitesimal second but
higher order.

Next, we consider the difference of the second order derivatives:

_ pp q
Wislik — Wiskst = Rup + SpUizg (11)
where we identified

Ry Efgc,z _Fﬁ,k +F$Fiqk _kari%' (12)
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R?,. is curvature tensor.
Similarly, we have
Ui = Uy = —Rigyu? + Sy, (13)
Remark 3. Also possible and slightly different way of definition a covariant
derivative, namely, the absolute differential DA’ is first determined using the
formula:
DA" =~ dA" + I Alda® = (A% + T A7) da*, (14)
Absolute differential defined as derivative coefficient, all the results obtained
with this approach to the construction is identical with the analysis, which has
been made above. Then more clearly we can assert: for any space to possess
absolute parallelism it is a necessary and sufficient condition that curvature
tensor was be identity vanishing (recall that the space is called with absolute
parallelism if the result of the parallel transport of an arbitrary tensor - vector
does not depend on the choice of path for all points of space). The proof of this

theorem is generally known, we note only that it follows from the formula:
DDA' - DDA' = —R},, APdz"da!, (15)
which we could get by folding (13) with da*dz!.

All the constructions outlined above are general in nature without specifying
space, further we will investigate the structure of the tensor R%,;. So, by definition
of (12) we have:

Ry, =00, —Th, + LoD — Ty L

Then we use (10) and obtain:

Rl = Pl Ll =P+ L o4 (Ph + 10, ) (P + L) — (P, + L2,) (P, + L) =
=Pl — Pl + PPl —PUPL + LY — Ly, +Ph L+
+Pi Ly —Ph LY, — PhLLY + Lo L — Lo, L.

Next we introduce the notation:

Pl = P;fi,k - Pfk,i + PskP?z' + PZiP?k (16)

is a tensor like the Riemann curvature tensor, composed of the metric tensor

and its derivatives.

Zhy = Lskng’ - ng’L?k (17)

is tensor and
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Th = Li;p — Ly + Po LY + PLLY, — PL LY — PRLLE, (18)

is tensor.
If we take into account that R.,, is tensor, the last assertion is obvious. It is

interesting to obtain this important result in another way, namely:
Th = Ly — L — LisTy + L Ly, + LY, T + Ly Loy — Lo, T — Ly L+
P 74 qra D 14 a 7P _
+P Ly + P Ly, — PoiLy, — P Ly, =
= Lfi;k - Lfk;i - L?iLsk + LZiL?k + L;]kLZi - LZkL?i + qusgkv

is obviously the tensor because the absolute derivatives have tensor character.
We introduce the notation:

Mp, = Thy + Ziys (19)
then we obtain
MYy = Ly — Liga + L7, Sh + L Ly, — Loy L, (20)
and in the new notation:
Ry, =Pl + M, (21)

Formula (21) shows that the curvature tensor, in general, cases can be rep-
resented as the sum of two tensors (such representation is not accidental, it
is associated with a physical description of the field, roughly speaking, in the
absence of gravitational fields tensor MZ,, is not equal to zero). Although the
formula (20) gives a qualitative representation of the geometric structure it a
little convenient, since in it re-enter the values of If; .

Further, we establish the equation, which is similar to equation of Ricci —

Jacobi
Rfkl + Rili + Rfik = ka,l + SZl,i + Sﬁ,k + F;kslqi + kasgk + F;Z'SIZI =
= ka;z + Fﬁsﬁfk + 1 Sig + Sk + Fl?isgl + Flgsilc)q + Sﬁ;k + I73Sg; + F’S{,‘SZIZI =
= Stea + Sk T St + S1Sh + SkySii + St Sk

It is easy to prove the equations:

S;@Sii + S,ipSij =0,5;,5" =0;

g

and as a consequence, we obtain the equation:

S}pShi + SipSty + 85,57, = 0.



DOI 10.15673/2072-9812.2/2014.29622
The space with torsion, Einstein-Hilbert equation 61

3 The study of geodesics in the space with torsion

Formula (7) consists of sum three summand of various kinds.
The sum (8) is a geometric object second valence; its components are con-

verted by a formula similar to the one that takes place for the connection:

, ozt dzk Ot 92zP  dat’
OxP Ox* Oz Oz Ozl Oz
but note that in this space, this "connection" does not satisfy the "torsion con-
dition" (S}, = Iy, — I};)-
Value: £57, - this tensor can be to be used as a "connection", but then this
"connection" is not used to satisfy the compatibility condition.
Value:

1 .

is a tensor that expresses the combined effect of the metric and torsion.
First of all, it is easy to show that the element %S,’C’l does not affect the
geodesic, since by the asymmetry of the torsion is not included in the equations

of geodesic lines:
2zt ok dz’ dij
dr2 — TYdr dr’

i.e. equation (24) will be determined only sum P¥,+M},. In (24) 7 is the canonical

(24)

parameter, i.e. for which there ‘é—””: is a portable parallel vector. For no isotropic
geodesic the length of arc s is a canonical parameter, for geodetic related to s
take place differential equations:

d?z* L dot dlj

ds2 Y ds ds’

Definition. The line is called a geodesic if any tangent to this line at some
point vector remains tangent to it at the parallel transport along it.

Theorem 2. Equations of geodesic lines in a metric space with torsion de-
termined by the geometric object in form of the sum:

1. 1 i
P+ M}, = 29" (9ik,t + Qi — i) + 29" (GrmSTi + gumSK) -

In case classical Riemannian space geodetic lines have known extreme prop-
erties, in this case analogical properties of geodesic require additional research.
Thus, for a no isotropic geodesic with canonical parameter arc length s, we

have differential equations:

d?a* L dxt dad

@ = T
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Consider the problem of calculating the variation of the arc length
Let a non-isotropic curve: ' = x%(t),

t € [t1;t2]. We calculate the variation
of length 4.5 of the curve S:
- - dz® da?
t2 dx? d:z:J t2 9 glﬂ dt dt )
05 = | 0\ 9u gy gt o U
t1 o 2y/g;; 0 del
da® da? - dx’ da’ da’ - dx? dz® ~ dx?
5 (g ) g DO ET g DI 9y, 2 I
(gfdt dt> 932 ar TV a Y T g Y a
~ da’ da?
- = iaiadll
D i 0— i Fpk i 5:5
57 dz*
D— = —5 Ny o i
a — ar’t dt v
- dad oxd .
D— = D— J —5 k
dt ar O 0

where denotes D the absolute differential through the parameter curves of the

family at a constant value ¢, and D is absolute differential charge small displace-
ment dt curve at a constant parameter of the family, then

dz® dx? St
5 (gt ) =2 % 4 g 95
(g” dt dt > s gy dt ( kg OF ) :

ta dxt ) ta - dat
t1 tl

Pk g

k P—

t2 dx’ t2 drt . . t2 d ‘
= D | g ) —/ gi; D—dx’ —|—/ gij SJ
/tl < ! ds t1 ’ ds t1 !

if the ends of the variable curve fixed, then

dxpéa:k,

2 ; da’ d
ds = / (gijS[J)k T daP sz — gijDi(S z7),

tl . dt

if considered curve has fixed length (analytically ds = 0), then we obtain

t2 - dxt dx? -
i 7, ——daPéxk — g;;D——-6 27) = 0.
/t1 (9i5 S, g 0Tt = Gig o a?)

Using the fundamental lemma calculus of variations, it follows

dx? dx?
Sk daP — g;i;D—— = 0.
ik Dj ds YGij ds
This equation means that the tangent vector £¢ of the curve is transported
according to the law qugquikS;fjfidxp, that means a s is not geodesic curve

Conversely, the variation of the length of the geodesic lines is

t2 . dat
§s = 1597, ——daP ",
] /tl 9ijOp L 70X
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Properties in the new geodesic geometry defined by means of two tensors g;x
and ka differ greatly from similar properties in Riemann geometry. The theorem
is proved.

Theorem 3. In order not isotropic line in space is generated by g;;, and Sgk

was geodetic it is necessary and sufficient that a variation of the arc was equaled:

ta i
/t1 9553, d; daPoz*.

Consequence. In the case of spaces with affine connection is known that
there is a breach of closure during the transition from the original to the image
and vice versa, in the case of an infinitely small contour determined (up 2 -
the second order relative to 7). If you specify the torsion tensor Sfj at the
corresponding point, then if this gap is denoted by ¥*, then W* = S}, A'BiT?
where the parallelogram A'r and B77 shrinks to a point at 7 — 0. In this case,
you cannot simply assert that such a gap exists, and to extrapolate the square
of the length: |[¥|* = g,,S¥, A'BI S, A*Bl 71,

Consider the question of what impact each summand of a connection has on
the construction of geodesic. Let the vector A’ is tangent to any geodesic and
A" is parallel transported to the connection I'F;:

1 . 1
Iy = §gm (Gik, + Giik — Gkt + Iem Sty + GimSE;) + §SZ1

and a vector B'is parallel transported to the connection PP,

1 .
Py = 59’” (Gikt + Guik — Grii) -

It was found that the first geodesic connections coincide with geodesic connection
P?, + M}}; here MZ-’} is an arbitrary symmetric tensor. Since both vector are
tangential, then

B! = aA’,

where the coefficient a is variable and a # 0. Tensor-vector A’ is given by:
k E E\ AG7..0
dA" = — (Pij + Mij) Atdx?
dB" = —P},B'dx’.
Then, we have
AFda + adA* = —PfjaAidxj,
Akda
a

_ k 7t j
= MEAldad. (25)
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Tangent vector A can be written: A* = % where 7 - the canonical parameter
relative to the connection P}, + M}),.

Then, after dividing by d7, we have

dlna
dr

AF = MEA'AT

Since geodesic lines can be carried out through any point and in any direction,
then equality must be true at any point and for any vector A?, the functional
dependence of the point and direction, obviously there.

The last equality is multiplied by A’ and alternate by k and I:
AIMPAT A — APML AT A =0,

or
Op MEATATA™ — 68 M ATATA™ =0

where we denote 6! = gmpgpl. This equation must hold identically with respect
to vectors Al, ... , A", consequently, after summed similar summand all the
coefficients of the cubic form must vanish. We compute the total coefficient:

oL ME — ok ML + oMb, — SFML, + SLME, — st M = .
then we contracted tensor by indices [ and j. Since §! = n, we have:

M} = +1 (67 ML + 65 M)

All calculations presented above do not take into account the specificity of
the tensor MZIE, then, let MF, = 297" (gkmS[® 4+ gim Sy7), then substitute in the
last equation M}, = £S5}, we obtained:

= %? (6555 + 05 S3) -
We formulate an important theorem.

Theorem 4. Let it be given classical Riemannian space (Riemannian man-
ifold with Riemannian metric tensor g;;, ) with the connection P’C - connection
Riemannian space. Let Y™ be the space generated jointly and agreed by metric g;,
and torsion SZ- tensors together with connection Fk To coincide the geodesics
in classical Riemannian space with the geodesics in space Y™ it is necessary and

sufficient that the connections PZ; and I’k to be differed by tensor:

L (ot s
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i.e.
rkoph=1i 1 (0F S5 + 67 Sh)
ij T g1 ViRl jQil) -

Proof. The necessity was derived above in more general terms than the
theorem is required.

We will prove the sufficiency. We assume that
Pk _ [vk 1 1 5kSl 6ksl
ij = ij_§m(i FREIEE
Then we again using (25), we have:

dlna
dr

Since along the curve S! A there is a definite function of the parameter 7, then it
will find In a after integration with up to a constant a, but only up to a constant
factor. Therefore, the vector is found B? = aA’ and all geodesic coincide. The

theorem is proved.

4 The theory of hypersurfaces

First we formulate a well-known classical result on the derivation formu-
las of hypersurface in Riemannian torsion-free space, where the connection is
uniquely generated by the metric.

Formal statement of Gauss-Codazzi equations in space with symmetrical con-
nection, Sfj = 0. Assume that i : M C P be is n-dimensional embedded subman-
ifold of a Riemannian manifold P of dimension n+p. There is a natural inclusion
of the tangent bundle of M into that of P by the pushforward, and the cokernel
is the normal bundle of M: 0 — T, — T, P|y — T+ M — 0. The metric splits
this short exact sequence, and so TP|y = TM & T+M.

The Levi-Civita connection V' of P decomposes into tangential and normal
components. For each X € TM and vector field Y on M, VY =T(VY)+ L
(VY).Letit be VxY =T(V4Y), a(X,Y) =L (VxY).Gauss’ formula asserts
that Vx is Levi-Civita connection on M, and « is a symmetric form with values
into the normal bundle. It is also referred to as the second fundamental form.
An immediate corollary is the Gauss equation. For X, Y, Z, W € TM,

(R(X,Y)Z, W) =(R(X,Y)Z,W) + (X, Z),a(Y,W)) — (Y, Z), (X, W)),

where R’ is the Riemann curvature tensor of P and R is that of M.
There are thus a pair of connections: V, defined on the tangent bundle of M;
and D, defined on the normal bundle of M. These combine to form a connection
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on any tensor product of copies of TM and T 1 M. In particular, they defined

the covariant derivative of « :
(Vxa)(Y, Z) = Dx(a(Y, Z)) — a(VxY, Z) — a(Y,Vx Z).
Codazzi equation is
{RI(X,Y)Z) = (Vka)(Y,Z2) — (Vya)(X, Z).

The above formulas also hold for immersions, because every immersion is, in
particular, a local embedding. The important assumption in the theory stated
above is that connection is symmetrical so analog of second form of hypersurface
is symmetrical and we could obtain the derivation formulas of hypersurface.

In our case we don’t assume any conditions about the connection
symmetry, so below we study much more complicated problem.

A similar manner as in the Riemannian space can be developed a theory
of hypersurfaces, so in the metric space with torsion can be constructed a the-
ory of hypersurfaces . But, due to the presence of torsion, in these cases there
is a significant difference. For example, the derivation equations (analog Peter-
son Codazzi equations) take a more complicated form, in which there are new
summands, which are caused by the presence of torsion in the space.

We make a study of the hypersurfaces Y"1 in a metric space with torsion

Y™, We are assuming that the hypersurface is defined by a system of equations:

R (yl’ “"yn—l) :

and the rank of the matrix {%‘”i} equal n — 1. The metric tensor of hypersurface
Y"1 is given by: o
i
Gap = gij%%v (26)
Then we obtain the formula for tensor of torsion Tgﬁ of hypersurface Y"1
(assuming that functions z*(y',...,y" ") are smooth enough). Let G, be the
connection of Y"1 and we assume that va express via metric aq,g and of
torsion T;’ﬂ similarly to as the connection I z’; express by means of g;; and Sfj ,
we have:

« 1 L
Gg, = 3 (Uba77 (aﬂnﬁ + ayn,g + Ay + apu Ty, + angn) + ﬁﬁ) : (27)

G+ 1s geometric object and is subjected to the law of the transformation from

one coordinate system u® to another u® by the formula:

N S Oour ouf duY dur 9Pu”
- G r 7 + 7 .
By By au(x auﬁ ouY 6u(x 8u58u7




DOI 10.15673/2072-9812.2/2014.29622
The space with torsion, Einstein-Hilbert equation 67

Then we assume that connection Ggﬂ{ of Y1 are associated with connection

Fi’;. of Y™ mean of formula:

L OaF L ort 0w | 0%
Broue ™ T guB dur T duPdu”
We obtain

. OxF
2 ( (aﬁn v+ ayn,g + apyy +ag T + aWTBn) + Vﬁ) due

1 ozt 9x7 0?%zk
= i(gkn (gnij + 9njii — Gijon + Gim S + GimSin) + Sk) N + ENCETE
By permuting indices, we have next formula for the torsion tensor of hypersurface

ynr-1

J q
using tensors a,g and T;*B both metric and torsion we can explore the geometry
of the space hypersurface Y~ !. The connection of Y?~! will be determined by
the formula (27).

Below we use the mixed tensors values enumerated two types of indices, while
Latin indices refer to the containing space Y™ and responsive to the coordinate
transformation x?, and Greek indices belong to the space hypersurface Y~ ! and
responsive to the coordinate transformation y®.

The index i is not responsive to the coordinate y® transformation into Y"1,
and the index o does not respond to the coordinate 2’ transformation in Y.

For example, the formula to calculate the covariant derivative of a mixed tensor:

3By = Afpy Fz’ﬂAJﬁ 3 ¥ qu pﬂa Y + G%Aj Gﬁw Jn (29)
The direct calculations lead us to formulas:
Ozt OxF Ozt OxF

Uisaip — Uispia = Ry u P9y ayP + Sitisg dy OyB’

Uyse;8 — Uy B0 = ngun + Tgauvmv
where Rga -, - curvature tensor of space Y"1 compiled by using the components
of connection G, .
A further aim of our study is to obtain some analogs of Peterson-Kodachi
equations. To do this, consider the system of values:
oz’

6= 5
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At each point of the hypersurface Y~ we can build rapper consisting of the
vectors:
ﬁv---vf;—la Vi7
where &%,...,&¢ | linearly independent tangent vectors and »* normal vector,
defined since the metric and connectivity agreed.
Next we act formally, the idea is the same as in the classical case, and we
will indicate significant new moments. We compute the derivative of the mixed

tensors £

q
gi _ gl + T ¢p Ox ¢t
a;y T Sayy Pq aayy aysn:

In contrast to the case of torsion-free connection, we have the equality:
iy = € = SigRE + T},
Next, we permute the indices in equation:

0=aapy = (gijﬁiﬁé)w = 9iln 6l + 9i5€0ED.,»
we obtain
95465 = 0.

Hence, we can write a decomposition:
gé;a = Traﬁl/i' (30)

Remark 4. 7,5 is tensor, which similar to the second fundamental tensor of
hypersurfaces Y1, but its structure in this space substantially different from
the case of Riemannian spaces with zero torsion.

Then we have obtained by differentiating gijl/i J =0 by ~:

o
9iiVn€a = ~Tya- (31)
Similarly, by differentiating g;;v'v7 = 1 by v, we obtain:
l/;i,y = —a’“‘ﬂmyff]. (32)

Formula (30) and (32) characterize the change of vectors in the small accom-
panying frame relative to this frame itself.
Further, we obtain:

) ) b ) )
%;X;A - %;A;x = zlpf,\fxfg + Rixﬁéé + fo%;o =

= (TxB:x — TABix) v — (TxpTra™ — mAgTyya"?) 5}; (33)
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(33) is multiplying by g¢;;&/, we have:
R = Rikzpfififgfi — (TxgTax — TABTax) -
Similarly, we derive a formula:
V;ix;/\ - VfA;X = _Rilpgl;giyp + TS\TXV?U =
= (Tyap @ — Typyina™) €. (34)
We contract (33) with g;;27, then:
Ry &' + TS, Top = Tygn — Tagix-
(34) is multiplying by g;;&%, we concluded that:
Rikzpflfﬁil/pgé + T3 Tao = Tarx — Tax;\-

Remark 5. If (34) contract with g;;27, then we obtain identically zero.

5 Establish some important relationships

We consider the equation:

i i i i t
Sjkr;p;q - Sjk;q;p quStk + qukS’t qptS kT qu Jk ts
or
i i i t
Sjk;p;q B Sjk;q;p qu Jkt qus kT qukS't qptS

we contract this tensors by an indices i, ¢; then the left side of this equation

can be transformed into:

i i i i oQa _qgi
Sjk;p;i Jksisp T Szp Jkt (Sjk;p quSjk),i Jksisp T Spqu

then, we contract this equation by an indices k£, p and raising the index j, we

obtained:
kpg] s Sz Sq

(9797 Sir,y — 97975, Sﬁk) ,—9’“’9”51 pasiSok =
Ssk’

= g"g R}, Sh + 9" g7  Ri .4 — 9" g R,

kyisp

ipk ipt

we introduce the notation:
HIt — gkpgjs‘gik;p _ gkngsSl SSI€7

FIP = g gIsSi .
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Then, without any loss of generality, we obtain the relations:

H;jiliF‘;JiligkpngSngPq = gkpgstEps Zk+gkpgst§ka§t7gkpgj8R;€ptS§k7 (35)

_gi
where Fpy =S} ;.

Suppose now that the identity Ricci — Jacobi run in a standard form, Rfkl +
Ry, + Rl =0, hence:
Stea + Sk T St + SiSih + SkySii + Siy Sk = 0.
we contract this equation by an indices p, [ we found identity:

Step T Skpsi + Sk = 0.

Next, we is assuming that Sfp = ¢; and taking into account the identity
Sijgq = 0, we obtain the following expression:

P, ..
Sij;p - sz,] 90]71'

Next if we put S}, = 0, then it follows that ¢; ; — ¢;; = 0 and hence

the value Sfp can be expressed in terms of the partial derivative of the scalar
Sty = @i = (In) ;. System (35) takes the form:

H;jiz - gkpngRgpsStik’ + gkpgst;?kait - gkpgstz:ptS(zka
Fi = .
We consider the tensor

Ok — gpqukszi)q + gpkgqiSZJ)'q + gw'gqjgzl;q7

obvious that it is antisymmetric in any pair of indices.

We have the equality:
ij - ij = C;iikj + ij + gkpgqu;ngs - gjpgqs‘sf)qsfsa
By direct calculations we can conclude that

gkpgqsséqsgs - gjpquS;qus = (ijqszl;q - Ckpqsgq) )

1
2
hence )
jk ki __ vikj jk j k k j
H* — HY = C7 + F7% + 5 (corasy —CFPagy ).

We calculate the covariant derivative

O = it = — (Czj’“ + I9,CF 4 TR CYP 4 1, CPM ) :
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By virtue of the fact that tensor CF = grigth Gl + gPkg1iGI 4 gPigai SF g

antisymmetric, we have:

J vipk _ pJ vipk J vipk J ik J ki J kpi
[3,0%F = 1) civk = (ripcp + 7,07 ) = 557,07 = —25,0"7",

1
2
similarly, we obtain
ki = rhorit = Lo (rh—15) = Lk covi = Lgk cian
pi — Tip 9 ip pi) = 9*ip ~ 9¥pa :
Then we write,

ikj ijk ijk k k kj
C’;i ——C’;i ——C’i 2SquC’ Pa 4 S O“’q ngC’p 7,

and

k kj _ ijk k k k. k k k
HIF— M = —Cih Qquc pa_ quCM—rgqcp LR (O, - CMs) )

H® — HY = —CF — 178, CP% ik,

S

We will compute Flp , for this, we recall that I'? 9v8 and

. ip 1
pl = 291177!9 = /g ol
D _ TP P i
I, =TI, +5,, obtain:

1 0
I = = 25 ), = (0 (007)) .
Then we obtain
HIik _ gk _ pik — mk (ln (71’\/7)) ki

We multiple byy\/—g, have
Uv/=g (B — HY = F) = —/=g (CF* + (1n (vv/=g)) , €™
UV (B~ BT~ ) = — (GO

We differentiate the last equality, in view of the antisymmetry of the tensors,

we obtain the next important equality:
ik kj ik _
(05 (1% = 1189 — 7)) =
6 The field equations

Below we consider the derivation of the field equations in depending of condi-

tions.
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6.1 The field equations in the absence of symmetry conditions

Let F;k is constructed on the basis of connection n - dimensional manifold. It
is not assumed that the I ;k are symmetric j in and k. Regardless of connection
F}k, we introduce symmetric metric tensor g (1).
We will derive the field equations from the variation principle of least action,
by varying the function F;k and g;;, independently.
Using (12) we can write the Riemann tensor:
Ry =17

P P 1q q
zp,j_F‘ +1’ri —rer. (36)

ij,p qj” wp qp= ij°

We form the scalar density as (Rik + Sglsllc» g'*\/=g, where S;‘k = F;k — F]z'j,
and postulate that all the variations of the integral:

/ (Rik + Sg’ls,ij) g*/=gdV (37)

with respect to I', and g**\/=g as the independent variables are zero (at the
boundaries do not vary).
Without dwelling on the standard intermediate calculations, we find that the

variation with respect to g**1/—g, lead to the equation
Rir + S%Sk; =0,
then the variation with respect to F;k, gives the equation

1 o L A .
I = 597 9pad + 9% Do + 97T, — 3 (9?5 = 59" 9mng " + gqu;q) -

~g" I}, +2 (g3, + 9" S}, ) = 0.
If we contract the left side of the last equality by indices ¢ and k, then we
obtain zero identically equal to zero. If we contract by indices j and k, we obtain
the equation
=39+ 599’} — 37T}y + 975, = 0.
Therefore, we have:

I = 597 9pad + 97 Do + 97T, — 97 T~

—3097 S8, +2 (97Sh + 'S}, ) = 0. (38)
Then we lowered upper indices by using the metric, obtain the equation:

1 1
—Gijk — igijgpquqyk + 9inlh; + 950 — 9551, — ggjksfp+
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+2 (9058, + 9 S, ) = 0. (39)
We use the symmetry of tensor g;;, and rearrange 7 and j, deduce the equa-
tion:
1
5 (gipsgj ¥ gjpka) + 5 (9500, + 9uST,) = 0. (40)

Further, we obtained:

—gij,k—%gijg” "9pq,kt9ip L+ 9ip L —0ii 1) fp—%gjksfp—% (9% ST, + girS5,) =0
(41)
Thus, we obtained the field equations (39) by varying connection obtained
equation and as a result of them we obtained (40) where there are only metric
and torsion. We assuming that the electromagnetic component is absent ¢ = 0,
then, from (40) we have 5’; » = 0, and connection is symmetrical, as in Riemann
geometry and (41) shows the known law of Einstein - Hilbert problem for the
gravitational field. If ¢ # 0 and the metric is flat (no gravitational field), then
(41) can be obtained Maxwell equation for electromagnetic field in vacuum.

6.2 The Einstein - Hilbert equation in case the absence of symmetry conditions

We start from the variation principle of least action in the form: § (W,,, + W,) =
0, where W,, and W, are action respectively for matter and field and where
values g;; are varying.

We obtain:

5 / Ry/=gdV = / (Rikv/=909™ + Rixg™6/=g + ¢"*v/=gdRix) 4V,
then we make a standard transformations in the second summand, we have:
. 1 .
Rikg™0V/=g = =5 Rpqg""9iv/=909"".

Calculations of ¢g**\/—gdR;, were performed directly by definition, then we
obtain two types of summands, the first have a standard form ¢** (6I7,) L=

gik (5F’él)7i — <gik5plii _ gil5]1£7> l

Stokes’ theorem converted to zero. Summands of the second type are due to the

, where gllk = 0 takes into account and by

lack of symmetry of connectivity: g"*§ R, = ¢'*d (F(fpflgi - FQF,?ZZJ). We express
the connection coefficients via the metric and torsion tensors and after rather
lengthy calculations, we obtain

G* Ry, = (S? §9 P Ge gkpgthZLqum) 5qt*.

ip gk — “ig“pk
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Thus, we have:

5/R¢ngv =

1 .
- / (Rik — 5oiR+ (SfpS;’k + S0P+ gkpgqfsxsgq)> V—gdg*dv.

And variation by W, is:

W, = K, / Ry/—gdV =

1 )
=K / (Rik — 59iB+ (SfpS,‘jk + 83,50, + gkpgthZ“S?nq)) V=g8g™av,

where a physical constant K7, as a rule, in the classical case is % and k called
the universal gravitational constant.

For variation of the action of matter, we find that:
W,y = K, /Tik\/—gég”“dV,

where T, - Energy-momentum tensor of matter, Ko - usually take a constant
equal 72%.
Therefore, we were using the principle of least action to dW, + éW,, = 0,

find relations:

1 .
/ (Rik - §gikR + (Sfpsgk + 83,50, + gkpgthf?Sﬁw) — KTik> V—gdg*dV =0,
Because of the arbitrariness dg**, we have:

1
Rik — ingR + Sp Sq + SfpS,fq + gkpgth{?SﬂLq = KT,;]C,

ip™~ qk

constant K, can be determined by K; and K.

6.3 The Einstein — Hilbert equation when the Lagrange function is depending on the
torsion tensor

Now we also we start from the variation principle of the least action in the form:
0 (W +W,) =0, where W,,, and W, - action respectively for matter and field
values, we are varying g;.

By standard calculations, we have:
5/ (Rik + Sglsllcj) g/ =gdV = / (Rikv/=909"™ + Rirg™6/—g+

9™ V= g0 Rux + ]S}/ =90g™ + S}Sk,9™0v/=g) dV,
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and
i 1 A
Rikg ”“6./_ —_ — gpqgm /_g5g k.

Similarly, we obtain:

j i L i
S15k9™ 0V =9 = =5 51184,9" 9irv/ 909"

Now we compute ¢**\/—gdR; directly by using the definition, thus ob-
tain two types of summands, the first have the standard form ¢** (6I};) , —

g (61h) = (9™t g"orp,)

Stokes’ theorem turns into zeros. Summand the second type are due to the lack

, where it is considered that g’f = 0 and by

of symmetry connection: g**§R;, = ¢**§ (ngfgi — Féf,g;)). Then we express
the connection coefficients via the metric and torsion, after a rather lengthy

calculation, we obtain:

GO Ry, = (Sfpsgk — §P S, — gkpgqtsgsgm) 5qi*.

Thus, we have:

5 / (Rax + 451, ) g™ v=gav =

1
_ / (Rik ~ SouR+ (Sg’psgk + 5157 + gkpgqfsggsgq) +

) 1 . )
+Sglsil<;j - 2S;zsll<:q9pqgik) vV —g(sgzde-

Then we obtain the conclusions:

Wy = Kl/ (Rik + SZZS,lW) gik\/—gdv =
1
= Kl/ (Rik - §gikR + (Sfpsgk + 88,50, + gkpgqtsg‘sg';,q) +

. 1 . ,
"’szszlcj - QS;];ZSIlcquqgik) V—gdg™*dv,

. . . . 3
where a physical constant K7, as a rule, in a classic case is 75— and k called the
universal gravitational constant.

For variation of the action of matter, we find:
Wy = K> / Tirn/—g6g™av,

where Tj; is Energy-momentum tensor of matter. Ky - usually take a constant

1
equal —g.
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Therefore, by the principle of least action for éW, + dW,,, = 0,we find rela-

tions:
1
/ (Rik - §gikR + (Sfpsgk + 55,50, gkpgqtsggsgq) +

, 1 . _
+59,Sk; — 552152,19”‘19% - KTik) V—gdg*kdV =0,
because of the arbitrariness 6¢**, we have:

1 . 1 .
Rir — g+ SE,Sar + SiySty + 9rpg™ ST Shyg + ShSk; — §Sg>lsllcquqgik =

= KTikv

where the constant K can be determined by K; and K.

7 Conclusions

We have investigated the properties of the space are generated jointly and agreed
by the metric and the torsion tensors. We have presented the structure of the
curvature tensor and studied its special features and for this tensor obtained
analog Ricci — Jacobi identity; also evaluated gap that occurs at the transition
from the original to the image and vice versa, in the case of an infinitely small
contours. The geodesic lines equation has been researched. We have shown that
the structure of tensor m,g, which is similar to the second fundamental tensor
of hypersurfaces Y"~!, is substantially different from the case of Riemannian
spaces with zero torsion. Then we have obtained formulas for hypersurfaces
Y"1, which characterize the change of vectors in accompanying basis relative
to this basis itself in the small.

Taking into consideration the structure of the space with metric and torsion
we have reach the aim of our paper i.e. derived from the variation principle the
general fields equations (electromagnetic and gravitational) i.e. obtained analog

of Einstein-Hilbert equation at such space.
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