Adiponectin gene single-nucleotide polymorphisms in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease

Main Article Content

Yu. Karachentsev
M. Gorshunska
T. Tyzhnenko
N. Krasova
I. Dunaeva
A. Gladkih
Zh. Leshchenko
A. Pochernyaev
T. Mishchenko
O. Plohotnichenko
L. Atramentova
N. Kravchun
V. Роltorak

Abstract

Background. It is generally believed that environmental and genetic factors interact with the formation of nonalcoholic fatty liver disease (NAFLD) phenotype and determine its progression. Both NAFLD and type 2 diabetes (T2D) are heterogeneous diseases with common pathogenic pathways. Adiponectin is an adipokine, which increases the sensitivity of hepatocytes and muscle to insulin, modulates energy homeostasis, glucose/lipid metabolism, and inflammatory response. A number of significant adiponectin gene polymorphisms are known in this area. The purpose of the study was to evaluate the possible association between two adiponectin gene (ADIPOQ) variants, +276 G/T (rs1501299) and –11391 G/A (rs17300539), and susceptibility to NAFLD in T2D patients of Ukrainian population. Materials and methods. Case-control study included a total of 155 persons with T2D (males/females: 77/78, age 54.55 ± 0.73 years, T2D duration 6.66 ± 0.49 years, body mass index 32.20 ± 0.43 kg/m2, waist/hip circumference 0.98 ± 0.01 m, HbA1c 7.26 ± 0.11 %) for biochemical characteristics (lipid profile, non-esterified fatty acids (NEFA), insulin, total adiponectin, etc.), including 90 T2D patients with NAFLD, 245 — with rs1501299 genotyping, 155 — with rs17300539 genotyping, and 51 sex and age-matched control subjects. The +276 G/T and –11391 G/A were determined by polymerase chain reaction — restriction fragment length polymorphism method with endonucleases Mva1269I (BsmI) and MspI (HpaII). Insulin resistance (IR) was assessed using homeostasis model assessment (HOMA) algorithm and as adipose IR (Adipo-IR, NEFAxinsulin). Unpaired Student’s t test, c2 test and Spearman’s rank order were used. To predict the probabilities of genetic risk in NAFLD, the odds ratio (OR) and 95% confidence interval (CI) were calculated. Results. T2D patients were characterized by overweight and obesity, which were more significant in the presence of NAFLD (p < 0.01). It was accompanied by an increase in НОМА-IR (p < 0.05) and triglycerides (p < 0.001) levels. We found that Adipo-IR was higher in patients with T2D as compared to the controls (p < 0.001), and this index was significantly increased in T2D patients with NAFLD in contrast to obesity-matched persons without NAFLD (190.18 ± 22.15 vs 133.32 ± 13.58 mmol/L·pmol/L, p < 0.02), with negative correlation between Adipo-IR and adiponectin level in T2D patients with NAFLD only (rs = –0.350, p = 0.021). Stratification of non-NAFLD patients by +276G/T genotype suggests the prevalence of GT- and TT-genotypes. Thus, the rs1501299 G-allele increased the risk of NAFLD in comparison with T-allele (OR = 4.44, 95% CI = 2.89–6.81, p < 0.05). We also found a significant difference in the frequency of –11391G/A between T2D and control groups, but not between the patients with and without NAFLD. We observed that the haplotype of GT/GG had been more common in T2D with NAFLD, and twice less often detected in patients without hepatic disease (33 and 16.49 %, respectively, p < 0.05). Conclusions. We can recommend Adipo-IR index as a predictive marker for the NAFLD development and the indicator for therapy success in T2D patients. We established new genetic markers (rs1501299 G-allele, rs17300539 and rs1501299 GG/GG and GT/GG haplotypes, respectively) for the risk of NAFLD development in T2D patients.

Article Details

How to Cite
Karachentsev, Y., M. Gorshunska, T. Tyzhnenko, N. Krasova, I. Dunaeva, A. Gladkih, Z. Leshchenko, A. Pochernyaev, T. Mishchenko, O. Plohotnichenko, L. Atramentova, N. Kravchun, and Роltorak V. “Adiponectin Gene Single-Nucleotide Polymorphisms in patients With Type 2 Diabetes Mellitus and nonalcoholic Fatty Liver Disease”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 13, no. 4, July 2017, pp. 229-37, doi:10.22141/2224-0721.13.4.2017.106646.
Section
Leading Article

References

Lonardo A, Ballestri S, Marchesinic G, Angulod P, Loria P. Nonalcoholic fatty liver disease: A precursor of the metabolic syndrome. Digestive and Liver Disease. 2015;47:181-90. doi: 10.1016/j.dld.2014.09.020.

Williams T. Metabolic Syndrome: Nonalcoholic Fatty Liver Disease. FP Essent. 2015;435:24-9. PMID: 26280342.

Socha P, Wierzbicka A, Neuhoff-Murawska J, Włodarek D, Podleśny J, Socha J. Nonalcoholic fatty liver disease as a feature of the metabolic syndrome. Rocz Panstw Zakl Hig. 2007;58(1):129-37.PMID: 17711101.

Fotbolcu H, Zorlu E. Nonalcoholic fatty liver disease as a multi-systemic disease. World J Gastroenterol. 2016 Apr 28;22(16):4079-90. doi: 10.3748/wjg.v22.i16.4079.

Im JA, Kim SH, Lee JW, Shim JY, Lee HR, Lee DC. Association between hypoadiponectinemia and cardiovascular risk factors in nonobese healthy adults. Metabolism Clinical and Experimental 2006;55:1546-50. PMID:17046559. doi: 10.1016/j.metabol.2006.06.027.

Chen W, Yu Z, Li Y. The relationship between nonalcoholic fatty liver and insulin resistance with abnormal glucose metabolism. Zhonghua Gan Zang Bing Za Zhi. 2000;8(2):76-7. (In Chinese). PMID: 10861107 .

Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, Natale S, Forlani G, Melchionda N. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50(8):1844-50. PMID: 11473047 doi: 10.2337/diabetes.50.8.1844.

Sharabi Y, Eldad A. Nonalcoholic fatty liver disease is associated with hyperlipidemia and obesity. Am J Med. 2000 Aug 1;109(2):171. PMID: 11032566. doi: 10.1016/S0002-9343(00)00434-4.

Li YY. Genetic and epigenetic variants influencing the development of nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18(45):6546-51. doi: 10.3748/wjg.v18.i45.6546.

Fotbolcu H, Zorlu E. Nonalcoholic fatty liver disease as a multi-systemic disease. World J Gastroenterol. 2016 Apr 28;22(16):4079-90. doi: 10.3748/wjg.v22.i16.4079.

Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000 Sep 12;102(11):1296-301. PMID: 10982546. doi: 10.1161/01.CIR.102.11.1296.

Hegener HH, Lee IM, Cook NR, Ridker PM, Zee RY. Association of adiponectin gene variations with risk of incident myocardial infarction and ischemic stroke: a nested case-control study. Clin Chem. 2006;52(11):2021-7. PMID: 16990411. doi: 10.1373/clinchem.2006.074476.

Putz DM, Goldner WS, Bar RS, Haynes WG, Sivitz WI. Adiponectin and C-reactive protein in obesity, type 2 diabetes, and monodrug therapy. Metabolism. 2004;53(11):1454-61. PMID: 15536601. doi: 10.1016/j.metabol.2004.06.013.

Liao YF, Chen LL, Zeng TS, Zheng J, Li HQ. Association of the +33371 A/G polymorphism in adiponectin receptor 2 gene with Type 2 diabetes in the Chinese population. J Endocrinol Invest. 2007;30(10):860-4. PMID: 18075289. doi: 10.1007/BF03349228.

Mendez-Sanchez N, Chavez-Tapia NC, Zamoravaldes D, Uribe M. Adiponectin, structure, function and pathophysiological implications in non-alcoholic fatty liver disease. Mini Rev Med Chem. 2006,6(6):651-6. PMID: 16787375. doi: 10.2174/138955706777435689.

Li XL, Sui JQ, Lu LL, Zhang NN, Xu X, Dong QY, Xin YN, Xuan SY. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: a concise review. Lipids Health Dis. 2016;15:53. PMID: 26965314. PMCID: PMC4785616. doi: 10.1186/s12944-016-0221-8.

Kim AY, Park YJ, Pan X, Shin KC, Kwak SH, Bassas AF, Sallam RM, Park KS, Alfadda AA, Xu A, Kim JB. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6:7585. PMID:26139044. PMCID: PMC4506505. doi: 10.1038/ncomms8585.

Saito K, Tobe T, Yoda M, Nakano Y, Choi-Miura NH, Tomita M. Regulation of gelatin-binding protein 28 (GBP28) gene expression by C/EBP. Biol Pharm Bull. 1999; 22(11):1158-62. PMID: 10598019.

Takahashi M, Arita Y, Yamagata K, Matsukawa Y, Okutomi K, Horie M, Shimomura I, Hotta K, Kuriyama H, Kihara S, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes Relat Metab Disord. 2000 Jul;24(7):861-8. PMID:10918532.

Vionnet N, Hani EH, Dupont S, Gallina S, Francke S, Dotte S, De Matos F, Durand E, Leprêtre F, Lecoeur C, Gallina P, Zekiri L, Dina C, Froguel P. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet. 2000 Dec;67(6):1470-80. PMID: 11067779. PMCID: PMC1287924. doi: 10.1086/316887.

Mori Y, Otabe S, Dina C, Yasuda K, Populaire C, Lecoeur C, Vatin V, Durand E, Hara K, Okada T, Tobe K, Boutin P, Kadowaki T, Froguel P. Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate Loci on 7p and 11p. Diabetes. 2002;51(4):1247-55. PMID: 11916952. doi: 10.2337/diabetes.51.4.1247.

Comuzzie AG, Tejero ME, Funahashi T, Martin LJ, Kissebah A, Takahashi M, Kihara S, Tanaka S, Rainwater DL, Matsuzawa Y, MacCluer JW, Blangero J. The genes influencing adiponectin levels also influence risk factors for metabolic syndrome and type 2 diabetes. Hum Biol. 2007;79(2):191-200. PMID: 18027814. doi: 10.1353/hub.2007.0029.

Menzaghi C, Ercolino T, Di Paola R, Berg AH, Warram JH, Scherer PE, Trischitta V, Doria A. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes. 2002;51(7):2306-12. PMID: 12086965. doi: 10.2337/diabetes.51.7.2306.

Gorshunska MYu, Karachencev YuІ, Kravchun NO, Atramentova LO, Gladkih OІ, Krasova NS, Leshhenko ZhA, Tyzhnenko TV, Opalejko JuA, Pochernjaev AK, Poltorak VV. Single nucleotide polymorphism of adiponectin gene (+276g > t) and expression of insulin-resistant state components in patients with type 2 diabetes mellitus. Problemi endokrinnoi patologіji. 2013;2:7-17. (in Ukrainian).

Gorshunskaya MYu, Karachentsev YuI, Atramentova LA, Tyzhnenko TV, Kravchun NA, Pochernyaev AK, Poltorak VV. Q192R polymorphism of PON-1 gene in type 2 diabetes patients. Cytol Genet. 2011;45(1):38-40. doi: 10.3103/S0095452711010087.

Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005-23. PMID: 22488764. doi: 10.1002/hep.25762.

Solnceva AV, Aksenova EA, Sukalo AV. Gender changes and genetic polymorphism of adiponectine in children with obesity. Izvestija nacional'noj akademii nauk Belorusi. 2011;2:29-37. (In Russian).

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul;28(7):412-9. PMID: 3899825.

Adams-Huet B, Devaraj S, Siegel D, Jialal I. Increased adipose tissue insulin resistance in metabolic syndrome: relationship to circulating adipokines. Metab Syndr Relat Disord. 2014;12(10):503-7. PMID: 25162912. doi: 10.1089/met.2014.0092.

Armitage P, Berry G. Statistical methods in medical research. 3rd ed. Blackwell Scientific Publications; 1994. 620 p.

Park SH, Kim BI, Kim SH, Kim HJ, Park DI, Cho YK, Sung IK, Sohn CI, Kim H, Keum DK, Kim HD, Park JH, Kang JH, Jeon WK. Body fat distribution and insulin resistance: beyond obesity in nonalcoholic fatty liver disease among overweight men. J Am Coll Nutr. 2007;26(4):321-6. PMID: 17906183.

Kravchun NO, Poltorak VV, Zemljanіcina OV, Grіnchenko TS, Gorshuns'ka MYu, Romanova ІP. Intercommunication of nonalcoholic fatty liver disease and development of complications in patients with type 2 diabetes mellitus, therapeutic approaches (review of literature). Problemi endokrinnoi patologіji. 2011;1:67-75. (In Ukrainian).

Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S, Ponti V, Pagano G, Ferrannini E, Rizzetto M. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia. 2005;48:634-42 PMID: 15747110. doi: 10.1007/s00125-005-1682-x.

Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005 May;115(5):1343-51. PMID: 15864352. doi: 10.1172/ JCI200523621.

Theocharidou E, Balaska A, Vogiatzis K, Tellis CC, Gossios TD, Athyros VG, Tselepis AD, Karagiannis A. Hypertrophic Mesenteric Adipose Tissue May Play a Role in Atherogenesis in Inflammatory Bowel Diseases. Inflamm Bowel Dis. 2016;22(9):2206-12. PMID: 27508511. doi: 10.1097/MIB.0000000000000873.

Buechler C, Wanninger J, Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases.World J Gastroenterol. 2011;17(23):2801-11. PMID: 21734787. PMCID:PMC3120939. doi: 10.3748/wjg.v17.i23.2801.

Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.Arterioscler Thromb Vasc Biol. 2000;20(6):1595-9. PMID: 10845877. doi: 10.1161/01.atv.20.6.1595.

Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003 Jul;112(1):91-100. PMID: 12840063. PMCID: PMC162288. doi: 10.1172/JCI17797.

Tyzhnenko TV, Atramentova LO, Karachencev YuI, Kravchun NO, Poltorak VV, Gorshuns'ka MYu, Jensen E, Leshhenko ZhA, Gladkih OI, Krasova NS. Single nucleotide polymorphism –11391 G>An of adiponectine gene (ADIPOQ) in type 2 diabetes patients with nonalcoholic fatty liver disease. Problemi endokrinnoji patologіji. 2014;3:7-17. (In Ukrainian).

Corbetta S, Redaelli A, Pozzi M, Bovo G, Ratti L, Redaelli E, Pellegrini C, Beck-Peccoz P, Spada A. Fibrosis is associated with adiponectin resistance in chronic hepatitis C virus infection. European Journal of Clinical Investigation. 2011;41(8):898-905 PMID: 21539538. doi: 10.1111/j.1365-2362.2011.02498.x.

Noreldin N, Shareef MM. Low Serum Adiponectin Correlates with Liver Fibrosis in Patients with Chronic Hepatitis C Infection. J Am Sci. 2014;10(9):36-40. doi: /10.7537/marsjas100914.05.

Karachencev YuI, Gorshunskaja MY, Atramentova LA, et al. Heterozygosity on SNP +276 G>T of adiponectin gene as a potential predictor of stability to the type 2 diabetes mellitus. Aktual'nі problemi akusherstva і gіnekologії, klіnіchnoi іmunologіi ta medichnoi genetiki. Lugans'k, 2010:195-199. (In Russian).

Tokushige K, Hashimoto E, Noto H, Yatsuji S, Taniai M, Torii N, Shiratori K. Influence of adiponectin gene polymorphisms in Japanese patients with non-alcoholic fatty liver disease. J Gastroenterol. 2009;44(9):976-82. PMID: 19484180. doi: 10.1007/s00535-009-0085-z.

Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA. 2001;98(4):2005-10. doi: 10.1073/pnas.041591798.

Schwarz PE, Govindarajalu S, Towers W, Schwanebeck U, Fischer S, Vasseur F, Bornstein SR, Schulze J. Haplotypes in the promoter region of the ADIPOQ gene are associated with increased diabetes risk in a German Caucasian population. Horm Metab Res. 2006;38(7):447-51. PMID: 16933180. doi: 10.1055/s-2006-947842.

Gu HF. Biomarkers of adiponectin: plasma protein variation and genomic DNA polymorphisms. Biomark Insights. 2009;4:123-33. PMID: 20029651. PMCID: PMC2796863.

Dolley G, Bertrais S, Frochot V, Bebel JF, Guerre-Millo M, Tores F, Rousseau F, Hager J, Basdevant A, Hercberg S, Galan P, Oppert JM, Lacorte JM, Clément K. Promoter adiponectin polymorphisms and waist/hip ratio variation in a prospective French adults study. Int J Obes (Lond). 2008 Apr;32(4):669-75. doi: 10.1038/sj.ijo.0803773.

Puppala J, Bhrugumalla S, Kumar A, Siddapuram SP, Viswa PD, Kondawar M, Akka J, Munshi A. Apolipoprotein C3 gene polymorphisms in Southern Indian patients with nonalcoholic fatty liver disease. Indian J Gastroenterol. 2014;33:524-9. doi: 10.1007/s12664-014-0504-9.

Sookoian S, Castaño GO, Scian R, Mallardi P, Fernández Gianotti T, Burgueño AL, San Martino J, Pirola CJ. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology. 2015;61(2):515-25. PMID: 25302781. doi: 10.1002/hep.27556.

Wang BF, Wang Y, Ao R, Tong J, Wang BY. AdipoQ T45 G and G276 T Polymorphisms and Susceptibility to Nonalcoholic Fatty Liver Disease Among Asian Populations: A Meta-Analysis and Meta-Regression. J Clin Lab Anal. 2016;30(1):47-57. doi: 10.1002/jcla.21814.