Diabetic cardiomyopathy: epidemiology, etiology and pathogenesis

Main Article Content

V.A. Serhiyenko
A.A. Serhiyenko


This paper presents detailed analysis of current views on the epidemiology, etiology and pathogenesis of diabetic cardiomyopathy. Diabetes mellitus causes various structural and functional modifications of myocardial tissue. These pathophysiological changes occur due to metabolic disorders caused by hyperglycemia, insulin resistance and dyslipidemia. Free fatty acids can stimulate oxidation and accumulate in the cytosol, leading to lipotoxic effects through the formation of ceramides, diacylglycerol and reactive oxygen species. Hyperglycemia also causes an increase in reactive oxygen species and the formation of end products of glycation, which is accompanied by the development of cardiac glucose toxicity. The combination of these pathophysiological processes, adenosine triphosphate deficiency and lipo-/glucose toxicity are promoters of Ca2+ imbalance, mitochondrial/endoplasmic reticulum stress and apoptosis, activation of protein kinase C signaling pathways, mitogen-activated protein kinases, ubiquitin-proteasome system, proteotoxic stress, activation of the cyclic modulator of adenosine 5’-monophosphates, renin-angiotensin system, causing low-grade chronic inflammation, development of diastolic and, subsequently, systolic dysfunction, myocardial fibrosis. Chronic hyperglycemia, insulin resistance and hyperinsulinemia cause cardiomyocyte resistance to insulin and metabolic disorders that exacerbate mitochondrial dysfunction, oxidative stress, production of glycation end products, alteration of Ca2+ metabolism in the mitochondria, chronic low-grade inflammation, activation of the renin-angiotensin-aldosterone system, stress of the endoplasmic reticulum, death of cardiomyocytes, as well as microvascular dysfunction. These pathophysiological disorders contribute to cardiac stiffness, hypertrophy and fibrosis, the development of diastolic and systolic myocardial dysfunction and heart failure.

Article Details

How to Cite
Serhiyenko, V., and A. Serhiyenko. “Diabetic Cardiomyopathy: Epidemiology, Etiology and Pathogenesis”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 16, no. 4, May 2020, pp. 337-48, doi:10.22141/2224-0721.16.4.2020.208488.
Literature Review


Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595-602. doi:10.1016/0002-9149(72)90595-4.

Veklich AS, Koziolova NA, Karavaev PG. Cardiovascular remodeling in patients with diabetic сardiomyopathy. Russ J Cardiol. 2019;11:42-47. doi:10.15829/1560-4071-2019-11-42-47. (in Russian).

Marcinkiewicz A, Ostrowski S, Drzewoski J. Can the onset of heart failure be delayed by treating diabetic cardiomyopathy?. Diabetol Metab Syndr. 2017;9:21. doi:10.1186/s13098-017-0219-z.

Lee MMY, McMurray JJV, Lorenzo-Almorós A, et al. Diabetic cardiomyopathy. Heart. 2019;105(4):337-345. doi:10.1136/heartjnl-2016-310342.

Gulsin GS, Athithan L, McCann GP. Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Ther Adv Endocrinol Metab. 2019;10:2042018819834869. doi:10.1177/2042018819834869.

Maack C, Lehrke M, Backs J, et al. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J. 2018;39(48):4243-4254. doi:10.1093/eurheartj/ehy596.

Authors/Task Force Members, Rydén L, Grant PJ, et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD) [published correction appears in Eur Heart J. 2014 Jul 14;35(27):1824]. Eur Heart J. 2013;34(39):3035-3087. doi:10.1093/eurheartj/eht108.

Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ Res. 2018;122(4):624-638. doi:10.1161/CIRCRESAHA.117.311586.

Win TT, Davis HT, Laskey WK. Mortality Among Patients Hospitalized With Heart Failure and Diabetes Mellitus: Results From the National Inpatient Sample 2000 to 2010. Circ Heart Fail. 2016;9(5):e003023. doi:10.1161/CIRCHEARTFAILURE.115.003023.

Serhiyenko VA, Serhiyenko AA. Diabetic cardiac autonomic neuropathy: Do we have any treatment perspectives?. World J Diabetes. 2015;6(2):245-258. doi:10.4239/wjd.v6.i2.245.

Lind M, Bounias I, Olsson M, Gudbjörnsdottir S, Svensson AM, Rosengren A. Glycaemic control and incidence of heart failure in 20,985 patients with type 1 diabetes: an observational study. Lancet. 2011;378(9786):140-146. doi:10.1016/S0140-6736(11)60471-6.

Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 2018;17(1):83. doi:10.1186/s12933-018-0728-6.

Paneni F. Empagliflozin across the stages of diabetic heart disease. Eur Heart J. 2018;39(5):371-373. doi:10.1093/eurheartj/ehx519.

Kobalava ZhD, Medovchshikov VV, Yeshniyazov NB, Khasanova ER. The modern paradigm of pathophysiology, prevention and treatment of heart failure in type 2 diabetes mellitus. Russ J Cardiol. 2019;11:98-111. doi:10.15829/1560-4071-2019-11-98-111. (in Russian).

Rawshani A, Rawshani A, Franzén S, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018;379(7):633-644. doi:10.1056/NEJMoa1800256.

Ofstad AP, Urheim S, Dalen H, et al. Identification of a definite diabetic cardiomyopathy in type 2 diabetes by comprehensive echocardiographic evaluation: A cross-sectional comparison with non-diabetic weight-matched controls. J Diabetes. 2015;7(6):779-790. doi:10.1111/1753-0407.12239.

Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12(3):144-153. doi:10.1038/nrendo.2015.216.

Qi Y, Xu Z, Zhu Q, et al. Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes. 2013;62(11):3887-3900. doi:10.2337/db13-0095.

Cook SA, Varela-Carver A, Mongillo M, et al. Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur Heart J. 2010;31(1):100-111. doi:10.1093/eurheartj/ehp396.

Liu F, Song R, Feng Y, et al. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α. Circulation. 2015;131(9):795-804. doi:10.1161/CIRCULATIONAHA.114.012285.

Vincent MA, Clerk LH, Lindner JR, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53(6):1418-1423. doi:10.2337/diabetes.53.6.1418.

Jia G, Habibi J, DeMarco VG, et al. Endothelial Mineralocorticoid Receptor Deletion Prevents Diet-Induced Cardiac Diastolic Dysfunction in Females. Hypertension. 2015;66(6):1159-1167. doi:10.1161/HYPERTENSIONAHA.115.06015.

Vega RB, Horton JL, Kelly DP. Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ Res. 2015;116(11):1820-1834. doi:10.1161/CIRCRESAHA.116.305420.

Guo CA, Guo S. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. J Endocrinol. 2017;233(3):R131-R143. doi:10.1530/JOE-16-0679.

Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375(19):1834-1844. doi:10.1056/NEJMoa1607141.

Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G. Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management. World J Diabetes. 2013;4(5):177-189. doi:10.4239/wjd.v4.i5.177.

Lee TI, Kao YH, Chen YC, Huang JH, Hsiao FC, Chen YJ. Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy. Diabetes Res Clin Pract. 2013;100(3):330-339. doi:10.1016/j.diabres.2013.01.008.

Vinik AI, Nevoret ML, Casellini C, Parson H. Diabetic neuropathy. Endocrinol Metab Clin North Am. 2013;42(4):747-787. doi:10.1016/j.ecl.2013.06.001.

Avlas O, Fallach R, Shainberg A, Porat E, Hochhauser E. Toll-like receptor 4 stimulation initiates an inflammatory response that decreases cardiomyocyte contractility. Antioxid Redox Signal. 2011;15(7):1895-1909. doi:10.1089/ars.2010.3728.

Pal D, Dasgupta S, Kundu R, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med. 2012;18(8):1279-1285. doi:10.1038/nm.2851.

Jensen MK, Bartz TM, Mukamal KJ, et al. Fetuin-A, type 2 diabetes, and risk of cardiovascular disease in older adults: the cardiovascular health study. Diabetes Care. 2013;36(5):1222-1228. doi:10.2337/dc12-1591.

Jialal I, Devaraj S, Bettaieb A, Haj F, Adams-Huet B. Increased adipose tissue secretion of Fetuin-A, lipopolysaccharide-binding protein and high-mobility group box protein 1 in metabolic syndrome. Atherosclerosis. 2015;241(1):130-137. doi:10.1016/j.atherosclerosis.2015.04.814.

Cohen K, Waldman M, Abraham NG, et al. Caloric restriction ameliorates cardiomyopathy in animal model of diabetes. Exp Cell Res. 2017;350(1):147-153. doi:10.1016/j.yexcr.2016.11.016.

Noyan H, El-Mounayri O, Isserlin R, et al. Cardioprotective Signature of Short-Term Caloric Restriction. PLoS One. 2015;10(6):e0130658. doi:10.1371/journal.pone.0130658.

Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M. Diabetic Cardiomyopathy: Current Approach and Potential Diagnostic and Therapeutic Targets. J Diabetes Res. 2017;2017:1310265. doi:10.1155/2017/1310265.

Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy--fact or fiction?. Herz. 2011;36(2):102-115. doi:10.1007/s00059-011-3429-4.

León LE, Rani S, Fernandez M, Larico M, Calligaris SD. Subclinical Detection of Diabetic Cardiomyopathy with MicroRNAs: Challenges and Perspectives. J Diabetes Res. 2016;2016:6143129. doi:10.1155/2016/6143129.

Abdel Malik R, Zippel N, Frömel T, et al. AMP-Activated Protein Kinase α2 in Neutrophils Regulates Vascular Repair via Hypoxia-Inducible Factor-1α and a Network of Proteins Affecting Metabolism and Apoptosis. Circ Res. 2017;120(1):99-109. doi:10.1161/CIRCRESAHA.116.309937.

Teshima Y, Takahashi N, Nishio S, et al. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ J. 2014;78(2):300-306. doi:10.1253/circj.cj-13-1187.

Murdoch CE, Chaubey S, Zeng L, et al. Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition. J Am Coll Cardiol. 2014;63(24):2734-2741. doi:10.1016/j.jacc.2014.02.572.

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-1070. doi:10.1161/CIRCRESAHA.110.223545.

Ganesh Yerra V, Negi G, Sharma SS, Kumar A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol. 2013;1(1):394-397. doi:10.1016/j.redox.2013.07.005.

Flyvbjerg A. Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol. 2010;6(2):94-101. doi:10.1038/nrendo.2009.266.

Shi X, Chen Y, Nadeem L, Xu G. Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation. 2013;10:69. doi:10.1186/1742-2094-10-69.

Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol. 2014;2014:674987. doi:10.1155/2014/674987.

Uchimura K, Hayata M, Mizumoto T, et al. The serine protease prostasin regulates hepatic insulin sensitivity by modulating TLR4 signalling. Nat Commun. 2014;5:3428. doi:10.1038/ncomms4428.

Pal PB, Sonowal H, Shukla K, Srivastava SK, Ramana KV. Aldose Reductase Mediates NLRP3 Inflammasome-Initiated Innate Immune Response in Hyperglycemia-Induced Thp1 Monocytes and Male Mice. Endocrinology. 2017;158(10):3661-3675. doi:10.1210/en.2017-00294.

Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free Radic Biol Med. 2014;66:36-44. doi:10.1016/j.freeradbiomed.2013.02.008.

Zhang Z, Wang S, Zhou S, et al. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol. 2014;77:42-52. doi:10.1016/j.yjmcc.2014.09.022.

Lei S, Li H, Xu J, et al. Hyperglycemia-induced protein kinase C β2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes. 2013;62(7):2318-2328. doi:10.2337/db12-1391.

Li Z, Abdullah CS, Jin ZQ. Inhibition of PKC-θ preserves cardiac function and reduces fibrosis in streptozotocin-induced diabetic cardiomyopathy. Br J Pharmacol. 2014;171(11):2913-2924. doi:10.1111/bph.12621.

Wang Y, Zhou S, Sun W, et al. Inhibition of JNK by novel curcumin analog C66 prevents diabetic cardiomyopathy with a preservation of cardiac metallothionein expression. Am J Physiol Endocrinol Metab. 2014;306(11):E1239-E1247. doi:10.1152/ajpendo.00629.2013.

Yang L, Zhao D, Ren J, Yang J. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim Biophys Acta. 2015;1852(2):209-218. doi:10.1016/j.bbadis.2014.05.006.

Xie Z, Lau K, Eby B, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes. 2011;60(6):1770-1778. doi:10.2337/db10-0351.

Dassanayaka S, Jones SP. O-GlcNAc and the cardiovascular system. Pharmacol Ther. 2014;142(1):62-71. doi:10.1016/j.pharmthera.2013.11.005.

Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142(3):375-415. doi:10.1016/j.pharmthera.2014.01.003.

Makino A, Dai A, Han Y, et al. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice. Am J Physiol Cell Physiol. 2015;309(9):C593-C599. doi:10.1152/ajpcell.00069.2015.

Westermeier F, Riquelme JA, Pavez M, et al. New Molecular Insights of Insulin in Diabetic Cardiomyopathy. Front Physiol. 2016;7:125. doi:10.3389/fphys.2016.00125.

Wang X, Huang W, Liu G, et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol. 2014;74:139-150. doi:10.1016/j.yjmcc.2014.05.001.

Li J, Ma W, Yue G, et al. Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy. J Mol Cell Cardiol. 2017;102:53-60. doi:10.1016/j.yjmcc.2016.11.013.

Bhuiyan MS, Pattison JS, Osinska H, et al. Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest. 2013;123(12):5284-5297. doi:10.1172/JCI70877.

Barbati SA, Colussi C, Bacci L, et al. Transcription Factor CREM Mediates High Glucose Response in Cardiomyocytes and in a Male Mouse Model of Prolonged Hyperglycemia. Endocrinology. 2017;158(7):2391-2405. doi:10.1210/en.2016-1960.

Barwari T, Joshi A, Mayr M. MicroRNAs in Cardiovascular Disease. J Am Coll Cardiol. 2016;68(23):2577-2584. doi:10.1016/j.jacc.2016.09.945.

Nair N, Kumar S, Gongora E, Gupta S. Circulating miRNA as novel markers for diastolic dysfunction. Mol Cell Biochem. 2013;376(1-2):33-40. doi:10.1007/s11010-012-1546-x.

Liu X, Liu S. Role of microRNAs in the pathogenesis of diabetic cardiomyopathy. Biomed Rep. 2017;6(2):140-145. doi:10.3892/br.2017.841.

Jiang X, Liu W, Deng J, et al. Polydatin protects cardiac function against burn injury by inhibiting sarcoplasmic reticulum Ca2+ leak by reducing oxidative modification of ryanodine receptors. Free Radic Biol Med. 2013;60:292-299. doi:10.1016/j.freeradbiomed.2013.02.030.

Yan D, Luo X, Li Y, et al. Effects of advanced glycation end products on calcium handling in cardiomyocytes. Cardiology. 2014;129(2):75-83. doi:10.1159/000364779.

Sung MM, Hamza SM, Dyck JR. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal. 2015;22(17):1606-1630. doi:10.1089/ars.2015.6305.

Liu W, Chen P, Deng J, Lv J, Liu J. Resveratrol and polydatin as modulators of Ca2+ mobilization in the cardiovascular system. Ann N Y Acad Sci. 2017;1403(1):82-91. doi:10.1111/nyas.13386.

Xu YZ, Zhang X, Wang L, et al. An increased circulating angiotensin II concentration is associated with hypoadiponectinemia and postprandial hyperglycemia in men with nonalcoholic fatty liver disease. Intern Med. 2013;52(8):855-861. doi:10.2169/internalmedicine.52.8839.

Frantz EDC, Giori IG, Machado MV, et al. High, but not low, exercise volume shifts the balance of renin-angiotensin system toward ACE2/Mas receptor axis in skeletal muscle in obese rats. Am J Physiol Endocrinol Metab. 2017;313(4):E473-E482. doi:10.1152/ajpendo.00078.2017.

Muñoz MC, Burghi V, Miquet JG, et al. Chronic blockade of the AT2 receptor with PD123319 impairs insulin signaling in C57BL/6 mice. Peptides. 2017;88:37-45. doi:10.1016/j.peptides.2016.12.003.

Baudrand R, Gupta N, Garza AE, et al. Caveolin 1 Modulates Aldosterone-Mediated Pathways of Glucose and Lipid Homeostasis. J Am Heart Assoc. 2016;5(10):e003845. doi:10.1161/JAHA.116.003845.

Kim JA, Jang HJ, Martinez-Lemus LA, Sowers JR. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metab. 2012;302(2):E201-E208. doi:10.1152/ajpendo.00497.2011.

Widyantoro B, Emoto N, Nakayama K, et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation. 2010;121(22):2407-2418. doi:10.1161/CIRCULATIONAHA.110.938217.

Gulsin GS, Athithan L, McCann GP. Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Ther Adv Endocrinol Metab. 2019;10:2042018819834869. doi:10.1177/2042018819834869.