Hashimoto’s thyroiditis: modern views on the pathogenesis (literature review)

Main Article Content

V.А. Shidlovskyi
А.V. Shidlovskyi
M.I. Sheremet
L.P. Sydorchuk
I.V. Pankiv


There is a steady increase in the incidence of Hashimoto’s autoimmune thyroiditis worldwide. The etiology and pathogenetic mechanisms of its development are unknown. It is believed that the cause may be increasing and rapidly changing antigenic load on the immune system by environmental triggers such as the nature and quality of food, intestinal dysbacteriosis, bacterial, viral and fungal infections. Due to the action of several of these factors or one of them, the intestinal immune system loses the ability to identify antigens that come with food and mistakenly begins to produce antibodies to body tissues. Leading importance in the development of this process is given to intestinal dysbacteriosis. The review analyzes the literature data on the importance of dysbacteriosis and the intestinal immune system in the deve­lopment of autoimmunity and Hashimoto’s thyroiditis. The natural intestinal microflora is in close and constant contact with the immune system of the mucous membrane. The immune system limits the invasion of intestinal wall tissues by a wide variety of microbes, including potential pathogens that can be ingested with food. Despite immune barriers, bacteria can find ways to cross the epithelial layer. In this case, the mechanisms of bacterial destruction are triggered — phagocytosis and elimination by macrophages. Intestinal dysbacteriosis leads to autoimmune diseases and changes the usual modes of digestion and absorption, the functioning of the mucous membrane and the immune system. Intestinal dysbacteriosis causes a violation of the functional density of its mucous membrane. The essence of this process is that the amount of protein that fills the space between the enterocytes and binds them together, thus forming a protective barrier, is reduced in dysbacteriosis. This process is regulated by a specific protein zonulin, which under physiological conditions regulates the absorption of food ingredients and creates a selective permeability of molecules. In dysbacteriosis, the selective permeability of the intestinal wall is lost. Toxins, products of incomplete hydrolysis and other antigens that create a load on the immune system begin to pass through it. These processes lead to food intolerance, allergies and the deve­lopment of autoimmunity.

Article Details

How to Cite
Shidlovskyi, V., Shidlovskyi А., M. Sheremet, L. Sydorchuk, and I. Pankiv. “Hashimoto’s Thyroiditis: Modern Views on the Pathogenesis (literature Review)”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 16, no. 4, May 2020, pp. 349-54, doi:10.22141/2224-0721.16.4.2020.208489.
Literature Review


Lee SL. What is the global incidence of Hashimoto thyroiditis?. Available from: https://www.medscape.com/answers/120937-122449/what-is-the-global-incidence-of-hashimoto-thyroiditis. Acceced: 25 Mar 2020.

Smyth MC. Intestinal permeability and autoimmune diseases. Bioscience Horizons: The International Journal of Student Research. 2017;10:hzx015. doi:10.1093/biohorizons/hzx015.

Fröhlich E, Wahl R. Thyroid Autoimmunity: Role of Anti-thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Front Immunol. 2017;8:521. doi:10.3389/fimmu.2017.00521.

Campbell AW. Autoimmunity and the gut. Autoimmune Dis. 2014;2014:152428. doi:10.1155/2014/152428.

Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14(2):174-180. doi:10.1016/j.autrev.2014.10.016.

Pankiv IV. Prevalence of autoimmune thyroiditis among women with vitamin D deficiency. Mìžnarodnij endokrinologìčnij žurnal. 2017;13(5):336-339. doi:10.22141/2224-0721.13.5.2017.110023. (in Ukrainian).

Sheremet MI, Shidlovskiy VO, Sidorchuk LP. Autoimmune thyroiditis. Modern views on the pathogenesis and treatment (literature review). Endokrynologia. 2014;19(3):227-235.

Rose NR, Bonita R, Burek CL. Iodine: an environmental trigger of thyroiditis. Autoimmun Rev. 2002;1(1-2):97-103. doi:10.1016/s1568-9972(01)00016-7.

Rayman MP. Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proc Nutr Soc. 2019;78(1):34-44. doi:10.1017/S0029665118001192.

McLeod DS, Cooper DS. The incidence and prevalence of thyroid autoimmunity. Endocrine. 2012;42(2):252-265. doi:10.1007/s12020-012-9703-2.

Effraimidis G, Wiersinga WM. Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur J Endocrinol. 2014;170(6):R241-R252. doi:10.1530/EJE-14-0047.

Duntas LH, Stathatos N. Toxic chemicals and thyroid function: hard facts and lateral thinking. Rev Endocr Metab Disord. 2015;16(4):311-318. doi:10.1007/s11154-016-9331-x.

Brent GA. Environmental exposures and autoimmune thyroid disease. Thyroid. 2010;20(7):755-761. doi:10.1089/thy.2010.1636.

Virili C, Centanni M. Does microbiota composition affect thyroid homeostasis?. Endocrine. 2015;49(3):583-587. doi:10.1007/s12020-014-0509-2.

Ferrari SM, Fallahi P, Antonelli A, Benvenga S. Environmental Issues in Thyroid Diseases. Front Endocrinol (Lausanne). 2017;8:50. doi:10.3389/fendo.2017.00050.

Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut. 2018;67(2):226-236. doi:10.1136/gutjnl-2017-314205.

Alkanani AK, Hara N, Gottlieb PA, et al. Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes. Diabetes. 2015;64(10):3510-3520. doi:10.2337/db14-1847.

Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis. 2017;76(9):1614-1622. doi:10.1136/annrheumdis-2016-211064.

Köhling HL, Plummer SF, Marchesi JR, Davidge KS, Ludgate M. The microbiota and autoimmunity: Their role in thyroid autoimmune diseases. Clin Immunol. 2017;183:63-74. doi:10.1016/j.clim.2017.07.001.

Nagy G, Huszthy PC, Fossum E, Konttinen Y, Nakken B, Szodoray P. Selected Aspects in the Pathogenesis of Autoimmune Diseases. Mediators Inflamm. 2015;2015:351732. doi:10.1155/2015/351732.

Berbers RM, Nierkens S, van Laar JM, Bogaert D, Leavis HL. Microbial Dysbiosis in Common Variable Immune Deficiencies: Evidence, Causes, and Consequences. Trends Immunol. 2017;38(3):206-216. doi:10.1016/j.it.2016.11.008.

Yasmin Noone. Why can't anyone tell you exactly 'why' you have autoimmune thyroiditis? Available from: https://www.sbs.com.au/food/article/2018/05/03/why-cant-anyone-tell-you-exactly-why-you-have-autoimmune-thyroiditis.

Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, et al. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol. 2018;9:432. doi:10.3389/fmicb.2018.00432.

Almonacid DE, Kraal L, Ossandon FJ, et al. 16S rRNA gene sequencing and healthy reference ranges for 28 clinically relevant microbial taxa from the human gut microbiome. PLoS One. 2017;12(5):e0176555. doi:10.1371/journal.pone.0176555.

Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512-519. doi:10.1016/S0140-6736(03)12489-0.

Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001;345(5):340-350. doi:10.1056/NEJM200108023450506. 

Fiedorová K, Radvanský M, Bosák J, et al. Bacterial but Not Fungal Gut Microbiota Alterations Are Associated With Common Variable Immunodeficiency (CVID) Phenotype. Front Immunol. 2019;10:1914. doi:10.3389/fimmu.2019.01914.

Zhao F, Feng J, Li J, et al. Alterations of the Gut Microbiota in Hashimoto's Thyroiditis Patients. Thyroid. 2018;28(2):175-186. doi:10.1089/thy.2017.0395.

Aarts E, Ederveen THA, Naaijen J, et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One. 2017;12(9):e0183509. doi:10.1371/journal.pone.0183509.

Ma Y, Shi N, Li M, Chen F, Niu H. Applications of Next-generation Sequencing in Systemic Autoimmune Diseases. Genomics Proteomics Bioinformatics. 2015;13(4):242-249. doi:10.1016/j.gpb.2015.09.004.

Miyake S, Kim S, Suda W, et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS One. 2015;10(9):e0137429. doi:10.1371/journal.pone.0137429.

Xu H, Liu M, Cao J, et al. The Dynamic Interplay between the Gut Microbiota and Autoimmune Diseases. J Immunol Res. 2019;2019:7546047. doi:10.1155/2019/7546047.

Selber-Hnatiw S, Rukundo B, Ahmadi M, et al. Human Gut Microbiota: Toward an Ecology of Disease. Front Microbiol. 2017;8:1265. doi:10.3389/fmicb.2017.01265.

Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol Today. 1993;14(9):426-430. doi:10.1016/0167-5699(93)90244-F.

Liang B, Mamula MJ. Molecular mimicry and the role of B lymphocytes in the processing of autoantigens. Cell Mol Life Sci. 2000;57(4):561-568. doi:10.1007/PL00000718.

O'Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. Nat Med. 2004;10(8):801-805. doi:10.1038/nm0804-801.

Gallo A, Passaro G, Gasbarrini A, Landolfi R, Montalto M. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate. World J Gastroenterol. 2016;22(32):7186-7202. doi:10.3748/wjg.v22.i32.7186.

Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nat Immunol. 2017;18(8):851-860. doi:10.1038/ni.3780.

Passos MDCF, Moraes-Filho JP. Intestinal microbiota in digestive diseases. Arq Gastroenterol. 2017;54(3):255-262. doi:10.1590/S0004-2803.201700000-31.

Farhadi A, Banan A, Fields J, Keshavarzian A. Intestinal barrier: an interface between health and disease. J Gastroenterol Hepatol. 2003;18(5):479-497. doi:10.1046/j.1440-1746.2003.03032.x.

Feng T, Elson CO. Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 2011;4(1):15-21. doi:10.1038/mi.2010.60.

Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159-169. doi:10.1038/nri2710. 

Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Crit Rev Biochem Mol Biol. 2017;52(1):45-56. doi:10.1080/10409238.2016.1243654. 

Mukherjee S, Hooper LV. Antimicrobial defense of the intestine. Immunity. 2015;42(1):28-39. doi:10.1016/j.immuni.2014.12.028.

Litwińczuk M, Szydełko J, Szydełko M. The role of gut microbiota in patients with autoimmune thyroid diseases – current status and future perspectives. J Educ Health Sport. 2019;9(9):816-827. doi:10.5281/zenodo.3460391.

Richards JL, Yap YA, McLeod KH, Mackay CR, Mariño E. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunology. 2016;5(5):e82. doi:10.1038/cti.2016.29. 

Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017;4:14. doi:10.1186/s40779-017-0122-9. 

Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev. 2014;13(1):3-10. doi:10.1016/j.autrev.2013.06.004.

Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J. Therapeutic Potential of Targeting the Th17/Treg Axis in Autoimmune Disorders. Molecules. 2017;22(1):134. doi:10.3390/molecules22010134.

McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011;9(4):265-278. doi:10.1038/nrmicro2538.

Kelsall B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol. 2008;1(6):460-469. doi:10.1038/mi.2008.61.

van Wijk F, Cheroutre H. Mucosal T cells in gut homeostasis and inflammation. Expert Rev Clin Immunol. 2010;6(4):559-566. doi:10.1586/eci.10.34.

Tomasello G, Tralongo P, Amoroso F, et al. Dysmicrobism, Inflammatory Bowel Disease And Thyroiditis: Analysis Of The Literature. J Biol Regul Homeost Agents. 2015;29(2):265-272.

Weil ZM, Borniger JC, Cisse YM, Abi Salloum BA, Nelson RJ. Neuroendocrine control of photoperiodic changes in immune function. Front Neuroendocrinol. 2015;37:108-118. doi:10.1016/j.yfrne.2014.10.001.

Rodríguez Y, Rojas M, Gershwin ME, Anaya JM. Tick-borne diseases and autoimmunity: A comprehensive review. J Autoimmun. 2018;88:21-42. doi:10.1016/j.jaut.2017.11.007.

Vojdani A. A Potential Link between Environmental Triggers and Autoimmunity. Autoimmune Dis. 2014;2014:437231. doi:10.1155/2014/437231.

Campbell AW. Pesticides: our children in jeopardy. Altern Ther Health Med. 2013;19(1):8-10.

Dolan KT, Chang EB. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Mol Nutr Food Res. 2017;61(1):10.1002/mnfr.201600129. doi:10.1002/mnfr.201600129.

Kellman R. Hashimoto's Thyroiditis: We Can Win This Battle!. Available from: https://www.huffpost.com/entry/hashimotos-thyroiditis-we_2_b_7118690.

Petru G, Stünzner D, Lind P, Eber O, Möse JR. Antibodies to Yersinia enterocolitica in immunogenic thyroid diseases. Acta Med Austriaca. 1987;14(1):11-14. (in German).

Desailloud R, Hober D. Viruses and thyroiditis: an update. Virol J. 2009;6:5. doi:10.1186/1743-422X-6-5.

Fasano A, Shea-Donohue T. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2(9):416-422. doi:10.1038/ncpgasthep0259.

Mindd Foundation. Autoimmune Thyroid Disease Begins with the Diet, Not in the Thyroid. Available from: https://mindd.org/autoimmune-thyroid-disease-begins-diet/.