R-enantiomer of α-lipoic acid. Opportunities and prospects for clinical use

Main Article Content

N.A. Kravchun
I.P. Dunaieva
P.P. Kravchun


The paper presents an analysis of current literature data on the use of the R-enantiomer of α-lipoic acid as an antihypertensive treatment in patients with hypertension and metabolic syndrome. An analysis of the literature was carried out on its use as an antiinflammatory agent in inflammatory diseases. Currently, a very important aspect of researches is the possibility of using R-α-lipoic acid as a micronutrient and therapeutic agent for the treatment of diabetic polyneuropathy and neurodegenerative di­seases, especially Alzheimer’s disease, carbohydrate metabolism disorders and metabolic syndrome. Lipoic acid has now become an important ingredient in multivitamin formulas, anti-aging supplements. R-α-lipoic acid is a metabolic antioxidant, its molecule contains a dithiolane ring in oxidized form, this ring has the ability to cleave with formation of dihydrolipoic acid. And since α-lipoic acid, a physiological form of thioctic acid, is a strong antioxidant that relieves the symptoms of diabetic neuropathy, the literature review analyzed data from various authors on the antioxidant effects of the R-enantiomer of α-lipoic acid and found that it had strong antioxidant effects, and its dose of 300 mg is bioequivalent to 600 mg of racemic α-lipoic acid. As presented in a sufficient number of analyzed sources, the biological role of lipoic acid is quite diverse. It is important to determine the exact causal relationship between lipoic acid and its immediate cellular targets. Lipoic acid can have a number of important and diverse physiological effects on the stimulation of neurohormonal function and, thus, indirectly affect multiple cellular signaling pathways in peripheral tissues.

Article Details

How to Cite
Kravchun, N., I. Dunaieva, and P. Kravchun. “R-Enantiomer of α-Lipoic Acid. Opportunities and Prospects for Clinical Use”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 17, no. 3, June 2021, pp. 258-70, doi:10.22141/2224-0721.17.3.2021.232661.
Literature Review


Reed LJ, Debusk BG, Gunsalus IC, Hornberger CS Jr. Crystalline alpha-lipoic acid; a catalytic agent associated with pyruvate dehydrogenase. Science. 1951;114(2952):93-4. doi: 10.1126/science.114.2952.93.

Zdzisińska B, Żurek A, Kandefer-Szerszeń M. Alpha-Ketoglutarate as a Molecule with Pleiotropic Activity: Well-Known and Novel Possibilities of Therapeutic Use. Arch Immunol Ther Exp (Warsz). 2017;65(1):21-36. doi:10.1007/s00005-016-0406-x.

Liu S, He L, Yao K. The Antioxidative Function of Alpha-Ketoglutarate and Its Applications. Biomed Res Int. 2018;2018:3408467. doi: 10.1155/2018/3408467.

Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem. 2004;11(9):1135-46. doi: 10.2174/0929867043365387.

Scott BC, Aruoma OI, Evans PJ, et al. Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation. Free Radic Res. 1994;20(2):119-33. doi: 10.3109/10715769409147509.

Devasagayam TP, Subramanian M, Pradhan DS, Sies H. Prevention of singlet oxygen-induced DNA damage by lipoate. Chem Biol Interact. 1993;86(1):79-92. doi: 10.1016/0009-2797(93)90113-d.

Liu J, Head E, Gharib AM, et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A. 2002;99(4):2356-61. doi: 10.1073/pnas.261709299.

Suh JH, Shenvi SV, Dixon BM, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci U S A. 2004;101(10):3381-6. doi: 10.1073/pnas.0400282101.

Lodge JK, Traber MG, Packer L. Thiol chelation of Cu2+ by dihydrolipoic acid prevents human low density lipoprotein peroxidation. Free Radic Biol Med. 1998;25(3):287-97. doi: 10.1016/s0891-5849(98)00048-3.

Anuradha B, Varalakshmi P. Protective role of DL-alpha-lipoic acid against mercury-induced neural lipid peroxidation. Pharmacol Res. 1999;39(1):67-80. doi: 10.1006/phrs.1998.0408.

Han D, Sen CK, Roy S, Kobayashi MS, Tritschler HJ, Packer L. Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants. Am J Physiol. 1997;273(5):R1771-8. doi: 10.1152/ajpregu.1997.273.5.R1771.

Koval SM, Yushko KO, Snihurska IO, Starchenko TG, Pankiv VI, Lytvynova OM, Mysnychenko OV. Relations of angiotensin-(1-7) with hemodynamic and cardiac structural and functional parameters in patients with hypertension and type 2 diabetes. Arterial Hypertension (Poland) 2019;23(3):183-189. DOI: 10.5603/AH.a2019.0012.

Vanden Boom TJ, Reed KE, Cronan JE Jr. Lipoic acid metabolism in Escherichia coli: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning and characterization of the E. coli lip locus, and identification of the lipoylated protein of the glycine cleavage system. J Bacteriol. 1991;173(20):6411-20. doi: 10.1128/jb.173.20.6411-6420.1991.

Akiba S, Matsugo S, Packer L, Konishi T. Assay of protein-bound lipoic acid in tissues by a new enzymatic method. Anal Biochem. 1998;258(2):299-304. doi: 10.1006/abio.1998.2615.

Packer L, Kraemer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition. 2001;17(10):888-95. doi: 10.1016/s0899-9007(01)00658-x.

Wollin SD, Jones PJ. Alpha-lipoic acid and cardiovascular disease. J Nutr. 2003;133(11):3327-30. doi: 10.1093/jn/133.11.3327.

Takaishi N, Yoshida K, Satsu H, Shimizu M. Transepithelial transport of alpha-lipoic acid across human intestinal Caco-2 cell monolayers. J Agric Food Chem. 2007;55(13):5253-9. doi: 10.1021/jf063624i.

Balamurugan K, Vaziri ND, Said HM. Biotin uptake by human proximal tubular epithelial cells: cellular and molecular aspects. Am J Physiol Renal Physiol. 2005;288(4):F823-31. doi: 10.1152/ajprenal.00375.2004.

Prasad PD, Wang H, Kekuda R, et al. Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate. J Biol Chem. 1998;273(13):7501-6. doi: 10.1074/jbc.273.13.7501.

Teichert J, Kern J, Tritschler HJ, Ulrich H, Preiss R. Investigations on the pharmacokinetics of alpha-lipoic acid in healthy volunteers. Int J Clin Pharmacol Ther. 1998;36(12):625-8.

Carlson DA, Smith AR, Fischer SJ, Young KL, Packer L. The plasma pharmacokinetics of R-(+)-lipoic acid administered as sodium R-(+)-lipoate to healthy human subjects. Altern Med Rev. 2007;12(4):343-51.

Breithaupt-Grögler K, Niebch G, Schneider E, et al. Dose-proportionality of oral thioctic acid--coincidence of assessments via pooled plasma and individual data. Eur J Pharm Sci. 1999;8(1):57-65. doi: 10.1016/s0928-0987(98)00061-x.

Harrison EH, McCormick DB. The metabolism of dl-(1,6-14C)lipoic acid in the rat. Arch Biochem Biophys. 1974;160(2):514-22. doi: 10.1016/0003-9861(74)90428-7.

Panigrahi M, Sadguna Y, Shivakumar BR, et al. alpha-Lipoic acid protects against reperfusion injury following cerebral ischemia in rats. Brain Res. 1996;717(1-2):184-8. doi: 10.1016/0006-8993(96)00009-1.

Arivazhagan P, Shila S, Kumaran S, Panneerselvam C. Effect of DL-alpha-lipoic acid on the status of lipid peroxidation and antioxidant enzymes in various brain regions of aged rats. Exp Gerontol. 2002;37(6):803-11. doi: 10.1016/s0531-5565(02)00015-3.

Jones W, Li X, Qu ZC, Perriott L, Whitesell RR, May JM. Uptake, recycling, and antioxidant actions of alpha-lipoic acid in endothelial cells. Free Radic Biol Med. 2002;33(1):83-93. doi: 10.1016/s0891-5849(02)00862-6.

Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 1997;29(3):315-31. doi: 10.1016/s0306-3623(96)00474-0.

Searls RL, Sanadi DR. alpha-Ketoglutaric dehydrogenase. 8. Isolation and some properties of a flavoprotein compnent. J Biol Chem. 1960;235:2485-91.

Suzuki YJ, Tsuchiya M, Packer L. Antioxidant activities of dihydrolipoic acid and its structural homologues. Free Radic Res Commun. 1993;18(2):115-22. doi: 10.3109/10715769309147348.

Yuzvenko T, Tarasenko S, Marchenko O. New opportunities for the use of alpha-lipoic acid: the role of enantiomers. Mìžnarodnij endokrinologìčnij žurnal. 2019;15(6):507-14. doi: 10.22141/2224-0721.15.6.2019.185414.

Devasagayam TP, Di Mascio P, Kaiser S, Sies H. Singlet oxygen induced single-strand breaks in plasmid pBR322 DNA: the enhancing effect of thiols. Biochim Biophys Acta. 1991 Mar 26;1088(3):409-12. doi: 10.1016/0167-4781(91)90133-7.

Haenen GR, Bast A. Scavenging of hypochlorous acid by lipoic acid. Biochem Pharmacol. 1991;42(11):2244-6. doi: 10.1016/0006-2952(91)90363-a.

Bast A, Haenen GR. Lipoic acid: a multifunctional antioxidant. Biofactors. 2003;17(1-4):207-13. doi: 10.1002/biof.5520170120.

Ou P, Tritschler HJ, Wolff SP. Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem Pharmacol. 1995;50(1):123-6. doi: 10.1016/0006-2952(95)00116-h.

Suh JH, Moreau R, Heath SH, Hagen TM. Dietary supplementation with (R)-alpha-lipoic acid reverses the age-related accumulation of iron and depletion of antioxidants in the rat cerebral cortex. Redox Rep. 2005;10(1):52-60. doi: 10.1179/135100005X21624.

Bush AI. Metal complexing agents as therapies for Alzheimer's disease. Neurobiol Aging. 2002;23(6):1031-8. doi: 10.1016/s0197-4580(02)00120-3.

Goralska M, Dackor R, Holley B, McGahan MC. Alpha lipoic acid changes iron uptake and storage in lens epithelial cells. Exp Eye Res. 2003;76(2):241-8. doi: 10.1016/s0014-4835(02)00307-x.

Schupke H, Hempel R, Peter G, et al. New metabolic pathways of alpha-lipoic acid. Drug Metab Dispos. 2001;29(6):855-62.

Lykkesfeldt J, Hagen TM, Vinarsky V, Ames BN. Age-associated decline in ascorbic acid concentration, recycling, and biosynthesis in rat hepatocytes--reversal with (R)-alpha-lipoic acid supplementation. FASEB J. 1998;12(12):1183-9. doi: 10.1096/fasebj.12.12.1183.

Michels AJ, Joisher N, Hagen TM. Age-related decline of sodium-dependent ascorbic acid transport in isolated rat hepatocytes. Arch Biochem Biophys. 2003;410(1):112-20. doi: 10.1016/s0003-9861(02)00678-1.

Suh JH, Shigeno ET, Morrow JD, et al. Oxidative stress in the aging rat heart is reversed by dietary supplementation with (R)-(alpha)-lipoic acid. FASEB J. 2001;15(3):700-6. doi: 10.1096/fj.00-0176com.

Xu DP, Wells WW. alpha-Lipoic acid dependent regeneration of ascorbic acid from dehydroascorbic acid in rat liver mitochondria. J Bioenerg Biomembr. 1996;28(1):77-85.

Bast A, Haenen GR. Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochim Biophys Acta. 1988;963(3):558-61. doi: 10.1016/0005-2760(88)90326-8.

Busse E, Zimmer G, Schopohl B, Kornhuber B. Influence of alpha-lipoic acid on intracellular glutathione in vitro and in vivo. Arzneimittelforschung. 1992;42(6):829-31.

Han D, Handelman G, Marcocci L, et al. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors. 1997;6(3):321-38. doi: 10.1002/biof.5520060303.

Suh JH, Wang H, Liu RM, Liu J, Hagen TM. (R)-alpha-lipoic acid reverses the age-related loss in GSH redox status in post-mitotic tissues: evidence for increased cysteine requirement for GSH synthesis. Arch Biochem Biophys. 2004;423(1):126-35. doi: 10.1016/j.abb.2003.12.020.

Kilic F, Handelman GJ, Traber K, Tsang K, Packer L, Trevithick JR. Modelling cortical cataractogenesis XX. In vitro effect of alpha-lipoic acid on glutathione concentrations in lens in model diabetic cataractogenesis. Biochem Mol Biol Int. 1998;46(3):585-95. doi: 10.1080/15216549800204112.

Wolz P, Krieglstein J. Neuroprotective effects of alpha-lipoic acid and its enantiomers demonstrated in rodent models of focal cerebral ischemia. Neuropharmacology. 1996;35(3):369-75. doi: 10.1016/0028-3908(95)00172-7.

Biewenga GP, Dorstijn MA, Verhagen JV, Haenen GR, Bast A. Reduction of lipoic acid by lipoamide dehydrogenase. Biochem Pharmacol. 1996;51(3):233-8. doi: 10.1016/0006-2952(95)02124-8.

Hagen TM, Vinarsky V, Wehr CM, Ames BN. (R)-alpha-lipoic acid reverses the age-associated increase in susceptibility of hepatocytes to tert-butylhydroperoxide both in vitro and in vivo. Antioxid Redox Signal. 2000;2(3):473-83. doi: 10.1089/15230860050192251.

Moini H, Tirosh O, Park YC, Cho KJ, Packer L. R-alpha-lipoic acid action on cell redox status, the insulin receptor, and glucose uptake in 3T3-L1 adipocytes. Arch Biochem Biophys. 2002;397(2):384-91. doi: 10.1006/abbi.2001.2680.

Dinkova-Kostova AT, Holtzclaw WD, et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A. 2002;99(18):11908-13. doi: 10.1073/pnas.172398899.

Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24(24):10941-53. doi: 10.1128/MCB.24.24.10941-10953.2004.

Suzuki YJ, Shi SS, Day RM, Blumberg JB. Differential regulation of MAP kinase signaling by pro- and antioxidant biothiols. Ann N Y Acad Sci. 2000;899:159-67. doi: 10.1111/j.1749-6632.2000.tb06184.x.

Shi SS, Day RM, Halpner AD, Blumberg JB, Suzuki YJ. Homocysteine and alpha-lipoic acid regulate p44/42 MAP kinase phosphorylation in NIH/3T3 cells. Antioxid Redox Signal. 1999;1(1):123-8. doi: 10.1089/ars.1999.1.1-123.

Konrad D, Somwar R, Sweeney G, et al. The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes. 2001;50(6):1464-71. doi: 10.2337/diabetes.50.6.1464.

Shay KP, Hagen TM. Age-associated impairment of Akt phosphorylation in primary rat hepatocytes is remediated by alpha-lipoic acid through PI3 kinase, PTEN, and PP2A. Biogerontology. 2009;10(4):443-56. doi: 10.1007/s10522-008-9187-x.

Zhang WJ, Wei H, Hagen T, Frei B. Alpha-lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway. Proc Natl Acad Sci U S A. 2007;104(10):4077-82. doi: 10.1073/pnas.0700305104.

Smith AR, Hagen TM. Vascular endothelial dysfunction in aging: loss of Akt-dependent endothelial nitric oxide synthase phosphorylation and partial restoration by (R)-alpha-lipoic acid. Biochem Soc Trans. 2003;31(Pt 6):1447-9. doi: 10.1042/bst0311447.

Saengsirisuwan V, Perez FR, Sloniger JA, Maier T, Henriksen EJ. Interactions of exercise training and alpha-lipoic acid on insulin signaling in skeletal muscle of obese Zucker rats. Am J Physiol Endocrinol Metab. 2004;287(3):E529-36. doi: 10.1152/ajpendo.00013.2004.

Cho KJ, Moini H, Shon HK, Chung AS, Packer L. Alpha-lipoic acid decreases thiol reactivity of the insulin receptor and protein tyrosine phosphatase 1B in 3T3-L1 adipocytes. Biochem Pharmacol. 2003;66(5):849-58. doi: 10.1016/s0006-2952(03)00395-2.

Foley TD, Petro LA, Stredny CM, Coppa TM. Oxidative inhibition of protein phosphatase 2A activity: role of catalytic subunit disulfides. Neurochem Res. 2007;32(11):1957-64. doi: 10.1007/s11064-007-9394-x.

Ross SH, Lindsay Y, Safrany ST, et al. Differential redox regulation within the PTP superfamily. Cell Signal. 2007;19(7):1521-30. doi: 10.1016/j.cellsig.2007.01.026.

Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002;277(23):20336-42. doi: 10.1074/jbc.M111899200.

Diesel B, Kulhanek-Heinze S, Höltje M, et al. Alpha-lipoic acid as a directly binding activator of the insulin receptor: protection from hepatocyte apoptosis. Biochemistry. 2007;46(8):2146-55. doi: 10.1021/bi602547m.

Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol (1985). 2005;99(1):330-7. doi: 10.1152/japplphysiol.00175.2005.

Cartee GD, Wojtaszewski JF. Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl Physiol Nutr Metab. 2007;32(3):557-66. doi: 10.1139/H07-026.

Kim MS, Park JY, Namkoong C, et al. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med. 2004;10(7):727-33. doi: 10.1038/nm1061.

Lee WJ, Lee IK, Kim HS, Kim YM, Koh EH, Won JC, Han SM, et al. Alpha-lipoic acid prevents endothelial dysfunction in obese rats via activation of AMP-activated protein kinase. Arterioscler Thromb Vasc Biol. 2005;25(12):2488-94. doi: 10.1161/01.ATV.0000190667.33224.4c.

Lee WJ, Song KH, Koh EH, et al. Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem Biophys Res Commun. 2005;332(3):885-91. doi: 10.1016/j.bbrc.2005.05.035.

Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997;272(47):29911-8. doi: 10.1074/jbc.272.47.29911.

Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE. 5'-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem. 2001;276(50):46912-6. doi: 10.1074/jbc.C100483200.

Treebak JT, Glund S, Deshmukh A, et al. AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes. 2006;55(7):2051-8. doi: 10.2337/db06-0175.

Shen QW, Zhu MJ, Tong J, Ren J, Du M. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in C2C12 myotubes. Am J Physiol Cell Physiol. 2007;293(4):C1395-403. doi: 10.1152/ajpcell.00115.2007.

Tsakiridis T, McDowell HE, Walker T, et al. Multiple roles of phosphatidylinositol 3-kinase in regulation of glucose transport, amino acid transport, and glucose transporters in L6 skeletal muscle cells. Endocrinology. 1995;136(10):4315-22. doi: 10.1210/endo.136.10.7664650.

Yaworsky K, Somwar R, Ramlal T, Tritschler HJ, Klip A. Engagement of the insulin-sensitive pathway in the stimulation of glucose transport by alpha-lipoic acid in 3T3-L1 adipocytes. Diabetologia. 2000;43(3):294-303. doi: 10.1007/s001250050047.

Estrada DE, Ewart HS, Tsakiridis T, et al. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: participation of elements of the insulin signaling pathway. Diabetes. 1996;45(12):1798-804. doi: 10.2337/diab.45.12.1798.

Henriksen EJ, Jacob S, Streeper RS, Fogt DL, Hokama JY, Tritschler HJ. Stimulation by alpha-lipoic acid of glucose transport activity in skeletal muscle of lean and obese Zucker rats. Life Sci. 1997;61(8):805-12. doi: 10.1016/s0024-3205(97)00562-6.

Streeper RS, Henriksen EJ, Jacob S, Hokama JY, Fogt DL, Tritschler HJ. Differential effects of lipoic acid stereoisomers on glucose metabolism in insulin-resistant skeletal muscle. Am J Physiol. 1997;273(1 Pt 1):E185-91. doi: 10.1152/ajpendo.1997.273.1.E185.

Hughes VA, Fiatarone MA, Fielding RA, et al. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol. 1993;264(6 Pt 1):E855-62. doi: 10.1152/ajpendo.1993.264.6.E855.

Jacob S, Streeper RS, Fogt DL, Hokama JY, Tritschler HJ, Dietze GJ, Henriksen EJ. The antioxidant alpha-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes. 1996;45(8):1024-9. doi: 10.2337/diab.45.8.1024.

Jacob S, Henriksen EJ, Schiemann AL, et al. Enhancement of glucose disposal in patients with type 2 diabetes by alpha-lipoic acid. Arzneimittelforschung. 1995;45(8):872-4.

Konrad T, Vicini P, Kusterer K, et al. alpha-Lipoic acid treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care. 1999;22(2):280-7. doi: 10.2337/diacare.22.2.280.

Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med. 2004;21(2):114-21. doi: 10.1111/j.1464-5491.2004.01109.x.

Reljanovic M, Reichel G, Rett K, et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy. Free Radic Res. 1999;31(3):171-9. doi: 10.1080/10715769900300721.

Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care. 1999;22(8):1296-301. doi: 10.2337/diacare.22.8.1296.

Ruhnau KJ, Meissner HP, Finn JR, et al. Effects of 3-week oral treatment with the antioxidant thioctic acid (alpha-lipoic acid) in symptomatic diabetic polyneuropathy. Diabet Med. 1999;16(12):1040-3. doi: 10.1046/j.1464-5491.1999.00190.x.

Ametov AS, Barinov A, Dyck PJ, et al; SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care. 2003;26(3):770-6. doi: 10.2337/diacare.26.3.770.

Ziegler D, Ametov A, Barinov A, et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care. 2006;29(11):2365-70. doi: 10.2337/dc06-1216.

Heitzer T, Finckh B, Albers S, Krohn K, Kohlschütter A, Meinertz T. Beneficial effects of alpha-lipoic acid and ascorbic acid on endothelium-dependent, nitric oxide-mediated vasodilation in diabetic patients: relation to parameters of oxidative stress. Free Radic Biol Med. 2001;31(1):53-61. doi: 10.1016/s0891-5849(01)00551-2.

Sena CM, Nunes E, Louro T, et al. Effects of alpha-lipoic acid on endothelial function in aged diabetic and high-fat fed rats. Br J Pharmacol. 2008;153(5):894-906. doi: 10.1038/sj.bjp.0707474.

Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol. 2002;16(8):1931-42. doi: 10.1210/me.2002-0074.

Federici M, Menghini R, Mauriello A, et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation. 2002;106(4):466-72. doi: 10.1161/01.cir.0000023043.02648.51.

Hagen TM, Moreau R, Suh JH, Visioli F. Mitochondrial decay in the aging rat heart: evidence for improvement by dietary supplementation with acetyl-L-carnitine and/or lipoic acid. Ann N Y Acad Sci. 2002;959:491-507. doi: 10.1111/j.1749-6632.2002.tb02119.x.

Petersen Shay K, Moreau RF, Smith EJ, Hagen TM. Is alpha-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life. 2008;60(6):362-7. doi: 10.1002/iub.40.

Sola S, Mir MQ, Cheema FA, et al. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study. Circulation. 2005;111(3):343-8. doi: 10.1161/01.CIR.0000153272.48711.B9.

Vasdev S, Gill V, Longerich L, Parai S, Gadag V. Salt-induced hypertension in WKY rats: prevention by alpha-lipoic acid supplementation. Mol Cell Biochem. 2003;254(1-2):319-26. doi: 10.1023/a:1027354005498.

Pankiv V. Efficacy of Using Alpha-Lipoic Acid in Diabetic Neuropathy. Mìžnarodnij endokrinologìčnij žurnal. 2015;(66):59-65. doi: 10.22141/2224-0721.2.66.2015.75440.

Vasdev S, Ford CA, Parai S, Longerich L, Gadag V. Dietary alpha-lipoic acid supplementation lowers blood pressure in spontaneously hypertensive rats. J Hypertens. 2000;18(5):567-73. doi: 10.1097/00004872-200018050-00009.

Vasdev S, Gill V, Parai S, Gadag V. Dietary lipoic acid supplementation attenuates hypertension in Dahl salt sensitive rats. Mol Cell Biochem. 2005;275(1-2):135-41. doi: 10.1007/s11010-005-1095-7.

Louhelainen M, Merasto S, Finckenberg P, Lapatto R, Cheng ZJ, Mervaala EM. Lipoic acid supplementation prevents cyclosporine-induced hypertension and nephrotoxicity in spontaneously hypertensive rats. J Hypertens. 2006;24(5):947-56. doi: 10.1097/01.hjh.0000222766.37971.9f.

El Midaoui A, de Champlain J. Prevention of hypertension, insulin resistance, and oxidative stress by alpha-lipoic acid. Hypertension. 2002;39(2):303-7. doi: 10.1161/hy0202.104345.

Midaoui AE, Elimadi A, Wu L, Haddad PS, de Champlain J. Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial superoxide production. Am J Hypertens. 2003;16(3):173-9. doi: 10.1016/s0895-7061(02)03253-3.

Takaoka M, Kobayashi Y, Yuba M, Ohkita M, Matsumura Y. Effects of alpha-lipoic acid on deoxycorticosterone acetate-salt-induced hypertension in rats. Eur J Pharmacol. 2001;424(2):121-9. doi: 10.1016/s0014-2999(01)01120-7.

McMackin CJ, Widlansky ME, Hamburg NM, et al. Effect of combined treatment with alpha-Lipoic acid and acetyl-L-carnitine on vascular function and blood pressure in patients with coronary artery disease. J Clin Hypertens (Greenwich). 2007;9(4):249-55. doi: 10.1111/j.1524-6175.2007.06052.x.

Packer L, Witt EH, Tritschler HJ. alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19(2):227-50. doi: 10.1016/0891-5849(95)00017-r.

Kunt T, Forst T, Wilhelm A, et al. Alpha-lipoic acid reduces expression of vascular cell adhesion molecule-1 and endothelial adhesion of human monocytes after stimulation with advanced glycation end products. Clin Sci (Lond). 1999;96(1):75-82.

Kim HS, Kim HJ, Park KG, et al. Alpha-lipoic acid inhibits matrix metalloproteinase-9 expression by inhibiting NF-kappaB transcriptional activity. Exp Mol Med. 2007;39(1):106-13. doi: 10.1038/emm.2007.12.

Chaudhary P, Marracci GH, Bourdette DN. Lipoic acid inhibits expression of ICAM-1 and VCAM-1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2006;175(1-2):87-96. doi: 10.1016/j.jneuroim.2006.03.007.

Lee EY, Lee CK, Lee KU, et al. Alpha-lipoic acid suppresses the development of collagen-induced arthritis and protects against bone destruction in mice. Rheumatol Int. 2007;27(3):225-33. doi: 10.1007/s00296-006-0193-5.

Morini M, Roccatagliata L, Dell'Eva R, et al. Alpha-lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2004;148(1-2):146-53. doi: 10.1016/j.jneuroim.2003.11.021.

Marracci GH, Marquardt WE, Strehlow A, et al. Lipoic acid downmodulates CD4 from human T lymphocytes by dissociation of p56(Lck). Biochem Biophys Res Commun. 2006;344(3):963-71. doi: 10.1016/j.bbrc.2006.03.172.

Schillace RV, Pisenti N, Pattamanuch N, Galligan S, Marracci GH, Bourdette DN, Carr DW. Lipoic acid stimulates cAMP production in T lymphocytes and NK cells. Biochem Biophys Res Commun. 2007;354(1):259-64. doi: 10.1016/j.bbrc.2006.12.195.

Zhang WJ, Frei B. Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells. FASEB J. 2001;15(13):2423-32. doi: 10.1096/fj.01-0260com.

Ikeda U, Ito T, Shimada K. Interleukin-6 and acute coronary syndrome. Clin Cardiol. 2001;24(11):701-4. doi: 10.1002/clc.4960241103.

Most read articles by the same author(s)

1 2 > >>