Prospects for the use of laser Doppler flowmetry to assess cutaneous blood microcirculation in diabetes mellitus

Main Article Content

Z.O. Shaienko
O.V. Ligonenko

Abstract

The аrticle considers the scientific and clinical aspects of laser Doppler flowmetry (LDF) in the diagnosis of the state of the microcirculatory bed in diabetes mellitus. LDF is a non-invasive quantitative method of microcirculation assessment; its capabilities include the analysis of microcirculatory rhythms and functional testing with different types of provocation tests, which provides a study of the state of regulatory mechanisms of microcirculation. The difficulties with studying the microcirculation are caused by the very small size of microvessels. The prevention and treatment of various microcirculatory disorders is one of the most important problems in medical practice. The findings of some studies suggest that microcirculatory disorders are not only a pathogenetic link in the development of complications, but are also observed in patients with early disorders of carbohydrate metabolism and may precede the manifestation of diabetes mellitus. The use of LDF in scientific researches will make it possible to reveal changes in microcirculatory bed functioning that are characteristic of diabetes mellitus. The possibility of non-invasive quantitative assessment of the state of microcirculatory blood flow in real time and the relative ease of use explains the high popularity of LDF in scientific researches and makes this method promising for use in clinical practice. This method can be of important diagnostic value for the study of the state of different levels of regulation of the microcirculatory tract and dynamic monitoring of the effectiveness of the prescribed treatment. Combined use of LDF to identify the risk of developing diabetic foot syndrome will allow to personify the treatment of diabetes. Among the most promising points of application should be noted the study of microcirculation in the early diagnosis of diabetes and its complications, clarifying the risk of complications, monitoring the effectiveness of treatment. The development of optimal evaluation methods of microcirculation is a prospect for further research.

Article Details

How to Cite
Shaienko, Z., and O. Ligonenko. “Prospects for the Use of Laser Doppler Flowmetry to Assess Cutaneous Blood Microcirculation in Diabetes Mellitus”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 17, no. 8, Jan. 2022, pp. 613-8, doi:10.22141/2224-0721.17.8.2021.246793.
Section
Original Researches

References

Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020 Mar;10(1):107-111. doi:10.2991/jegh.k.191028.001.

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018 Feb;14(2):88-98. doi:10.1038/nrendo.2017.151.

Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020 Sep 8;10(1):14790. doi:10.1038/s41598-020-71908-9.

Saeedi P, Petersohn I, Salpea P, et al; IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019 Nov;157:107843. doi:10.1016/j.diabres.2019.107843.

Khan A, Junaid N. Prevalence of diabetic foot syndrome amongst population with type 2 diabetes in Pakistan in primary care settings. J Pak Med Assoc. 2017 Dec;67(12):1818-1824.

Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis †. Ann Med. 2017 Mar;49(2):106-116. doi:10.1080/07853890.2016.1231932.

Paisey RB, Abbott A, Levenson R, et al; South-West Cardiovascular Strategic Clinical Network peer diabetic foot service review team. Diabetes-related major lower limb amputation incidence is strongly related to diabetic foot service provision and improves with enhancement of services: peer review of the South-West of England. Diabet Med. 2018 Jan;35(1):53-62. doi:10.1111/dme.13512.

Thomas E. Preventing amputation in adults with diabetes: identifying the risks. Nurs Stand. 2015 Jun 3;29(40):49-58. doi:10.7748/ns.29.40.49.e9708.

Strain WD, Paldánius PM. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol. 2018 Apr 18;17(1):57. doi:10.1186/s12933-018-0703-2.

Herdade AS, Silva IM, Calado Â, et al. Effects of Diabetes on Microcirculation and Leukostasis in Retinal and Non-Ocular Tissues: Implications for Diabetic Retinopathy. Biomolecules. 2020 Nov 21;10(11):1583. doi:10.3390/biom10111583.

Sun PC, Kuo CD, Chi LY, Lin HD, Wei SH, Chen CS. Microcirculatory vasomotor changes are associated with severity of peripheral neuropathy in patients with type 2 diabetes. Diab Vasc Dis Res. 2013 May;10(3):270-6. doi:10.1177/1479164112465443.

Tomešová J, Gruberova J, Lacigova S, Cechurova D, Jankovec Z, Rusavy Z. Differences in skin microcirculation on the upper and lower extremities in patients with diabetes mellitus: relationship of diabetic neuropathy and skin microcirculation. Diabetes Technol Ther. 2013 Nov;15(11):968-75. doi:10.1089/dia.2013.0083.

Herdade AS, Silva IM, Calado Â, et al. Effects of Diabetes on Microcirculation and Leukostasis in Retinal and Non-Ocular Tissues: Implications for Diabetic Retinopathy. Biomolecules. 2020 Nov 21;10(11):1583. doi:10.3390/biom10111583.

Cankurtaran V, Inanc M, Tekin K, Turgut F. Retinal Microcirculation in Predicting Diabetic Nephropathy in Type 2 Diabetic Patients without Retinopathy. Ophthalmologica. 2020;243(4):271-279. doi:10.1159/000504943.

Santesson P, Lins PE, Kalani M, et al. Skin microvascular function in patients with type 1 diabetes: An observational study from the onset of diabetes. Diab Vasc Dis Res. 2017 May;14(3):191-199. doi:10.1177/1479164117694463.

Neubauer-Geryk J, Kozera GM, Wolnik B, Szczyrba S, Nyka WM, Bieniaszewski L. Decreased reactivity of skin microcirculation in response to L-arginine in later-onset type 1 diabetes. Diabetes Care. 2013 Apr;36(4):950-6. doi:10.2337/dc12-0320.

Sander SV. Comparative characteristics of laser photoplethysmography and laser doppler flowmetry for testing of foot blood supply. Clinical Anatomy and Operative Surgery. 2017;16(2):94-97. doi:10.24061/1727-0847.16.1.2017.53. (in Ukrainian).

Zegarra-Parodi R, Snider EJ, Park PY, Degenhardt BF. Laser Doppler flowmetry in manual medicine research. J Am Osteopath Assoc. 2014 Dec;114(12):908-17. doi:10.7556/jaoa.2014.178.

Rajan V, Varghese B, van Leeuwen TG, Steenbergen W. Review of methodological developments in laser Doppler flowmetry. Lasers Med Sci. 2009 Mar;24(2):269-83. doi:10.1007/s10103-007-0524-0.

Guven G, Hilty MP, Ince C. Microcirculation: Physiology, Pathophysiology, and Clinical Application. Blood Purif. 2020;49(1-2):143-150. doi:10.1159/000503775.

Jacob M, Chappell D, Becker BF. Regulation of blood flow and volume exchange across the microcirculation. Crit Care. 2016 Oct 21;20(1):319. doi:10.1186/s13054-016-1485-0.

Vaghefi E, Donaldson PJ. The lens internal microcirculation system delivers solutes to the lens core faster than would be predicted by passive diffusion. Am J Physiol Regul Integr Comp Physiol. 2018 Nov 1;315(5):R994-R1002. doi:10.1152/ajpregu.00180.2018.

Kulikov D, Glazkov A, Dreval A, et al. Approaches to improve the predictive value of laser Doppler flowmetry in detection of microcirculation disorders in diabetes mellitus. Clin Hemorheol Microcirc. 2018;70(2):173-179. doi:10.3233/CH-170294.

Riva C, Ross B, Benedek GB. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol. 1972 Nov;11(11):936-44.

Damber JE, Lindahl O, Selstam G, Tenland T. Testicular blood flow measured with a laser Doppler flowmeter: acute effects of catecholamines. Acta Physiol Scand. 1982 Jun;115(2):209-15. doi:10.1111/j.1748-1716.1982.tb07067.x.

Omarjee L, Larralde A, Jaquinandi V, Stivalet O, Mahe G. Performance of noninvasive laser Doppler flowmetry and laser speckle contrast imaging methods in diagnosis of Buerger disease: A case report. Medicine (Baltimore). 2018 Oct;97(43):e12979. doi:10.1097/MD.0000000000012979.

Haj-Hosseini N, Richter JCO, Milos P, Hallbeck M, Wårdell K. 5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy. Biomed Opt Express. 2018 Apr 20;9(5):2284-2296. doi:10.1364/BOE.9.002284.

Neubauer-Geryk J, Hoffmann M, Wielicka M, et al. Current methods for the assessment of skin microcirculation: Part 1. Postepy Dermatol Alergol. 2019 Jun;36(3):247-254. doi:10.5114/ada.2019.83656.

Vasiliev AP, Streltsova NN. Laser doppler flowmetry in assessment of specifics of skin microhemocirculation in hypertensive patients and in its comorbidity with 2 type diabetes mellitus. Russian Journal of Cardiology. 2015;(12):20-26. (in Russian). doi:10.15829/1560-4071-2015-12-20-26.

Lal C, Unni SN. Correlation analysis of laser Doppler flowmetry signals: a potential non-invasive tool to assess microcirculatory changes in diabetes mellitus. Med Biol Eng Comput. 2015 Jun;53(6):557-66. doi:10.1007/s11517-015-1266-y.

Fernyhough P, McGavock J. Mechanisms of disease: Mitochondrial dysfunction in sensory neuropathy and other complications in diabetes. Handb Clin Neurol. 2014;126:353-77. doi:10.1016/B978-0-444-53480-4.00027-8.

Makmatov-Rys M, Raznitsyna I, Chursinova Y, et al. Perspectives on using laser fluorescence spectroscopy in chronological skin ageing assessment. Acta Dermatovenerol Alp Pannonica Adriat. 2020 Jun;29(2):77-79.

Viktoriya A, Irina R, Anastasiia G, et al. Laser fluorescence spectroscopy in predicting the formation of a keloid scar: preliminary results and the role of lipopigments. Biomed Opt Express. 2020 Mar 2;11(4):1742-1751. doi:10.1364/BOE.386029.

Nijenhuis-Rosien L, Kleefstra N, van Dijk PR, et al. Laser therapy for onychomycosis in patients with diabetes at risk for foot ulcers: a randomized, quadruple-blind, sham-controlled trial (LASER-1). J Eur Acad Dermatol Venereol. 2019 Nov;33(11):2143-2150. doi:10.1111/jdv.15601.

Huang J, Chen J, Xiong S, Huang J, Liu Z. The effect of low-level laser therapy on diabetic foot ulcers: A meta-analysis of randomised controlled trials. Int Wound J. 2021 Dec;18(6):763-776. doi:10.1111/iwj.13577.