The effect of modern hypoglycemic therapy on the course of chronic kidney disease in patients with type 2 diabetes mellitus

Main Article Content

V.I. Katerenchuk

Abstract

The article presents the literature review of the possibilities of modern antidiabetic therapy in the prevention of chronic kidney disease in patients with type 2 diabetes mellitus. The mechanisms of development and features of kidney disease in type 2 diabetes mellitus are described. The results of most recent clinical trials for studying the possibility of nephroprotection with new groups of hypoglycemic agents are reviewed: dipeptidyl peptidase-4 inhi-
bitors, glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors. The advantages of usage and the nephroprotective effects of agonists of glucagon-like peptide-1 receptors and sodium-glucose loop cotransporter-2 inhibitors are determined. Particular attention is paid to the nephroprotective effect of sodium-glucose loop co-transporter inhibitors as the only class of drugs that have demonstrated a reduction in the rate of decrease in glomerular filtration rate in patients with diabetes. The expediency of further study of the efficacy of the combined use of sodium-glucose cotransporter-2 inhibitors and agonists of glucagon-like peptide-1 receptors in diabetic chronic kidney disease is indicated. For a long time, approaches to the treatment of diabetic kidney disease did not differ for patients with type 1 and type 2 diabetes. The stu­dies of recent years have shown that new hypoglycemic drugs can not only lower blood glucose levels but also have a beneficial effect on renal function. The mechanisms of nephroprotective effects have not been fully studied, but it is clear that they are beyond the scope of improved glycemic control. The possibility of the nephroprotective effect of these drugs on a glomerular filtration rate in the range of 30–15 ml/min/1.73 m2 and below remains unexplored. The effect of the combined use of glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors is also unclear: will this combination predominate over monotherapy, and, if so, to what extent?

Article Details

How to Cite
Katerenchuk, V. “The Effect of Modern Hypoglycemic Therapy on the Course of Chronic Kidney Disease in Patients With Type 2 Diabetes Mellitus”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 17, no. 8, Jan. 2022, pp. 624-32, doi:10.22141/2224-0721.17.8.2021.246795.
Section
Literature Review

References

Nordheim E, Geir Jenssen T. Chronic kidney disease in patients with diabetes mellitus. Endocr Connect. 2021 Apr 29;10(5):R151-R159. doi:10.1530/EC-21-0097.

Rodriguez-Poncelas A, Garre-Olmo J, Franch-Nadal J, et al. Prevalence of chronic kidney disease in patients with type 2 diabetes in Spain: PERCEDIME2 study. BMC Nephrol. 2013 Feb 22;14:46. doi:10.1186/1471-2369-14-46.

Bailey RA, Wang Y, Zhu V, Rupnow MF. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes. 2014 Jul 2;7:415. doi:10.1186/1756-0500-7-415.

Umanath K, Lewis JB. Update on Diabetic Nephropathy: Core Curriculum 2018. Am J Kidney Dis. 2018 Jun;71(6):884-895. doi:10.1053/j.ajkd.2017.10.026.

Adler AI, Stevens RJ, Manley SE, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003 Jan;63(1):225-232. doi:10.1046/j.1523-1755.2003.00712.x.

Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013 Feb;24(2):302-308. doi:10.1681/ASN.2012070718.

Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of Diabetic Kidney Disease: Current and Future. Diabetes Metab J. 2021 Jan;45(1):11-26. doi:10.4093/dmj.2020.0217.

Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. clin J Am Soc Nephrol. 2017 Dec 7;12(12):2032-2045. doi:10.2215/CJN.11491116.

Foreman KJ, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018 Nov 10;392(10159):2052-2090. doi:10.1016/S0140-6736(18)31694-5.

Tong X, Yu Q, Ankawi G, Pang B, Yang B, Yang H. Insights into the Role of Renal Biopsy in Patients with T2DM: A Literature Review of Global Renal Biopsy Results. Diabetes Ther. 2020 Sep;11(9):1983-1999. doi:10.1007/s13300-020-00888-w.

Sharma SG, Bomback AS, Radhakrishnan J, et al. The modern spectrum of renal biopsy findings in patients with diabetes. Clin J Am Soc Nephrol. 2013 Oct;8(10):1718-1724. doi:10.2215/CJN.02510213.

Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018 May;6(5):361-369. doi:10.1016/S2213-8587(18)30051-2.

Mogensen CE. How to protect the kidney in diabetic patients: with special reference to IDDM. Diabetes. 1997 Sep;46(Suppl 2):S104-111. doi:10.2337/diab.46.2.s104.

Diabetes Control and Complications Trial Research Group. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. J Pediatr. 1994 Aug;125(2):177-188. doi:10.1016/s0022-3476(94)70190-3.

De Boer IH, Sun W, Cleary PA, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011 Dec 22;365(25):2366-2376. doi:10.1056/NEJMoa1111732.

King P, Peacock I, Donnelly R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol. 1999 Nov;48(5):643-648. doi:10.1046/j.1365-2125.1999.00092.x.

American Diabetes Association. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020 Jan;43(Suppl 1):S111-S134. doi:10.2337/dc20-S010.

Martínez-Castelao A, Górriz JL, Segura-de la Morena J, et al. Consensus document for the detection and management of chronic kidney disease. Nefrologia. 2014;34(2):243-262. doi:10.3265/Nefrologia.pre2014.Feb.12455.

Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020 Oct;98(4S):S1-S115. doi:10.1016/j.kint.2020.06.019.

DCCT Research Group. Factors in development of diabetic neuropathy. Baseline analysis of neuropathy in feasibility phase of Diabetes Control and Complications Trial (DCCT). Diabetes. 1988 Apr;37(4):476-481.

American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020 Jan;43(Suppl 1):S66-S76. doi:10.2337/dc20-S006.

Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol. 1981 Jul;241(1):F85-93. doi:10.1152/ajprenal.1981.241.1.F85.

Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000 Nov;49(11):1939-1945. doi:10.2337/diabetes.49.11.1939.

Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813-820. doi:10.1038/414813a.

Mogensen CE. Progression of nephropathy in long-term diabetics with proteinuria and effect of initial anti-hypertensive treatment. Scand J Clin Lab Invest. 1976 Jul;36(4):383-388. doi:10.1080/00365517609055274.

Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020 Jan 7;41(2):255-323. doi:10.1093/eurheartj/ehz486.

Lewis EJ, Hunsicker LG, Bain RP, Rohde RD; Collaborative Study Group. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993 Nov 11;329(20):1456-1462. doi:10.1056/NEJM199311113292004.

Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001 Sep 20;345(12):861-869. doi:10.1056/NEJMoa011161.

Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001 Sep 20;345(12):851-860. doi:10.1056/NEJMoa011303.

Barnett AH, Bain SC, Bouter P, et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004 Nov 4;351(19):1952-1961. doi:10.1056/NEJMoa042274.

Jafar TH, Stark PC, Schmid CH, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003 Aug 19;139(4):244-252. doi:10.7326/0003-4819-139-4-200308190-00006.

Ginsberg JS, Zhan M, Diamantidis CJ, Woods C, Chen J, Fink JC. Patient-reported and actionable safety events in CKD. J Am Soc Nephrol. 2014 Jul;25(7):1564-1573. doi:10.1681/ASN.2013090921.

Farrington K, Covic A, Nistor I, et al. Clinical Practice Guideline on management of older patients with chronic kidney disease stage 3b or higher (eGFR<45 mL/min/1.73 m2): a summary document from the European Renal Best Practice Group. Nephrol Dial Transplant. 2017 Jan 1;32(1):9-16. doi:10.1093/ndt/gfw411.

Martínez-Castelao A, Górriz JL, Ortiz A, Navarro-González JF. ERBP guideline on management of patients with diabetes and chronic kidney disease stage 3B or higher. Metformin for all? Nefrologia. 2017 Nov-Dec;37(6):567-571. doi:10.1016/j.nefro.2017.06.001.

Mosenzon O, Leibowitz G, Bhatt DL, et al. Effect of Saxagliptin on Renal Outcomes in the SAVOR-TIMI 53 Trial. Diabetes Care. 2017 Jan;40(1):69-76. doi:10.2337/dc16-0621.

Perkovic V, Toto R, Cooper ME, et al. Effects of Linagliptin on Cardiovascular and Kidney Outcomes in People With Normal and Reduced Kidney Function: Secondary Analysis of the CARMELINA Randomized Trial. Diabetes Care. 2020 Aug;43(8):1803-1812. doi:10.2337/dc20-0279.

Muskiet MHA, Tonneijck L, Huang Y,et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018 Nov;6(11):859-869. doi:10.1016/S2213-8587(18)30268-7.

Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016 Jul 28;375(4):311-322. doi:10.1056/NEJMoa1603827.

Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016 Nov 10;375(19):1834-1844. doi:10.1056/NEJMoa1607141.

Holman RR, Bethel MA, Mentz RJ, et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2017 Sep 28;377(13):1228-1239. doi:10.1056/NEJMoa1612917.

Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019 Jul 13;394(10193):121-130. doi:10.1016/S0140-6736(19)31149-3.

Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018 Aug;6(8):605-617. doi:10.1016/S2213-8587(18)30104-9.

Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med. 2015 Dec 3;373(23):2247-2257. doi:10.1056/NEJMoa1509225.

Bethel MA, Mentz RJ, Merrill P, et al. Microvascular and Cardiovascular Outcomes According to Renal Function in Patients Treated With Once-Weekly Exenatide: Insights From the EXSCEL Trial. Diabetes Care. 2020 Feb;43(2):446-452. doi:10.2337/dc19-1065.

Mann JFE, Ørsted DD, Brown-Frandsen K, et al. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med. 2017 Aug 31;377(9):839-848. doi:10.1056/NEJMoa1616011.

Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018 Oct 27;392(10157):1519-1529. doi:10.1016/S0140-6736(18)32261-X.

Perkovic V, Bain S, Bakris G, et al. EGFR loss with glucagon-like peptide-1 (GLP-1) analogue treatment: Data from SUSTAIN 6 and LEADER. Nephrology Dialysis Transplantation. 2019;34(Suppl 1):gfz106.FP482. doi:10.1093/ndt/gfz106.FP482.

Husain M, Birkenfeld AL, Donsmark M, et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2019 Aug 29;381(9):841-851. doi:10.1056/NEJMoa1901118.

Novo Nordisk A/S. A Research Study to See How Semaglutide Works Compared to Placebo in People With Type 2 Diabetes and Chronic Kidney Disease (FLOW). ClinicalTrials.gov Identifier: NCT03819153. Available from: https://clinicaltrials.gov/ct2/show/NCT03819153. Accessed: December 7, 2021.

Thomas MC. The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes. Diabetes Metab. 2017 Apr;43(Suppl 1):2S20-2S27. doi:10.1016/S1262-3636(17)30069-1.

Farah LX, Valentini V, Pessoa TD, Malnic G, McDonough AA, Girardi AC. The physiological role of glucagon-like peptide-1 in the regulation of renal function. Am J Physiol Renal Physiol. 2016 Jan 15;310(2):F123-127. doi:10.1152/ajprenal.00394.2015.

Gutzwiller JP, Tschopp S, Bock A, et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab. 2004 Jun;89(6):3055-3061. doi:10.1210/jc.2003-031403.

Sloan LA. Review of glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes mellitus in patients with chronic kidney disease and their renal effects. J Diabetes. 2019 Dec;11(12):938-948. doi:10.1111/1753-0407.12969.

Muskiet MH, Tonneijck L, Smits MM, et al. Acute renal haemodynamic effects of glucagon-like peptide-1 receptor agonist exenatide in healthy overweight men. Diabetes Obes Metab. 2016 Feb;18(2):178-185. doi:10.1111/dom.12601.

Tsimihodimos V, Elisaf M. Effects of incretin-based therapies on renal function. Eur J Pharmacol. 2018 Jan 5;818:103-109. doi:10.1016/j.ejphar.2017.10.049.

Thomson SC, Kashkouli A, Singh P. Glucagon-like peptide-1 receptor stimulation increases GFR and suppresses proximal reabsorption in the rat. Am J Physiol Renal Physiol. 2013 Jan 15;304(2):F137-144. doi:10.1152/ajprenal.00064.2012.

Tonneijck L, Smits MM, Muskiet MHA, et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial. Diabetologia. 2016 Jul;59(7):1412-1421. doi:10.1007/s00125-016-3938-z.

Górriz JL, Soler MJ, Navarro-González JF, et al. GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Call of Attention to Nephrologists. J Clin Med. 2020 Mar 30;9(4):947. doi:10.3390/jcm9040947.

Thomas MC. The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes. Diabetes Metab. 2017 Apr;43(Suppl 1):2S20-2S27. doi:10.1016/S1262-3636(17)30069-1.

Holman RR, Bethel MA, Mentz RJ, et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2017 Sep 28;377(13):1228-1239. doi:10.1056/NEJMoa1612917.

Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015 Nov 26;373(22):2117-2128. doi:10.1056/NEJMoa1504720.

Wanner Ch, Inzucchi SE, Zinman B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016 Nov 3;375(18):1801-1802. doi:10.1056/NEJMc1611290.

Neal B, Perkovic V, Matthews DR. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017 Nov 23;377(21):2099. doi:10.1056/NEJMc1712572.

Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019 Jan 24;380(4):347-357. doi:10.1056/NEJMoa1812389.

Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020 Oct 8;383(15):1425-1435. doi:10.1056/NEJMoa2004967.

Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020 Oct 8;383(15):1413-1424. doi:10.1056/NEJMoa2022190.

McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019 Nov 21;381(21):1995-2008. doi:10.1056/NEJMoa1911303.

McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019 Nov 21;381(21):1995-2008. doi:10.1056/NEJMoa1911303.

Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014 Feb 4;129(5):587-597. doi:10.1161/CIRCULATIONAHA.113.005081.

Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018 Jul;94(1):26-39. doi:10.1016/j.kint.2017.12.027.

Van Bommel EJM, Muskiet MHA, van Baar MJB, et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int. 2020 Jan;97(1):202-212. doi:10.1016/j.kint.2019.09.013.

Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019 Jun 13;380(24):2295-2306. doi:10.1056/NEJMoa1811744.

Halden TAS, Kvitne KE, Midtvedt K, et al. Efficacy and Safety of Empagliflozin in Renal Transplant Recipients With Posttransplant Diabetes Mellitus. Diabetes Care. 2019 Jun;42(6):1067-1074. doi:10.2337/dc19-0093.

Bakris G, Oshima M, Mahaffey KW, et al. Effects of Canagliflozin in Patients with Baseline eGFR <30 ml/min per 1.73 m2: Subgroup Analysis of the Randomized CREDENCE Trial. Clin J Am Soc Nephrol. 2020 Dec 7;15(12):1705-1714. doi:10.2215/CJN.10140620.

Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020 Oct 8;383(15):1436-1446. doi:10.1056/NEJMoa2024816.