Decrease in the efficacy of glucagon-like peptide-1 receptor agonists: what is the reason?

Main Article Content

N.M. Kushnarova
O.V. Zinych
V.V. Korpavchev
A.V. Kovalchuk
O.V. Prybyla
K.O. Shyshkan-Shishova


The review deals with the drugs of a group of glucagon-like peptide-1 receptors agonists (GLP-1RA) the action of which is based on the incretin effect. In addition to insulinotropic and glucagonostatic action, GLP-1RA contributes to the improvement of glycemic control, a decrease in body weight, and also reduces cardiovascular effects in diabetic patients. The members of this group are divided into short- and long-acting preparations that is determined by their pharmacodynamic properties. Studies have shown that the long-acting GLP-1RA, which are administered once a week, demonstrate better glycemic control with a similar or less risk of the hypoglycemia and gastrointestinal side effects than their short-acting analogues. However, with long-term use of GLP-1RA, there is a reduction in the hypoglycemic action associated with a decrease in the inhibition of intestinal motility due to the phenomenon of tachyphylaxis (desensitization) of the GLP-1 receptors as a result of the vagus nerve activation. Promising means to overcome this shortcoming are considered, such as the development of modified and combined coagonists of dipeptidyl peptidase 1 receptors, as well as oral forms of GLP-1RA. In addition, we have described possible mechanisms influencing the effectiveness of GLP-1RA due to the production of antibodies to various drugs in this group, and the relationship between the effects of incretin mimetics with the state of the intestinal microbiota. In conclusion, the group of incretin-based drugs provides broad perspectives for use in type 2 diabetic patients, with the possibility of correction of both basal and prandial glycemia, and new efficient and safe forms of drugs of this group are actively creating.

Article Details

How to Cite
Kushnarova, N., O. Zinych, V. Korpavchev, A. Kovalchuk, O. Prybyla, and K. Shyshkan-Shishova. “Decrease in the Efficacy of Glucagon-Like Peptide-1 Receptor Agonists: What Is the Reason?”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 17, no. 8, Jan. 2022, pp. 637-45, doi:10.22141/2224-0721.17.8.2021.246799.
Literature Review


American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021 Jan;44(Suppl 1):S111-S124. doi:10.2337/dc21-S009.

Drucker DJ. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018 Apr 3;27(4):740-756. doi:10.1016/j.cmet.2018.03.001.

Madsbad S, Holst JJ. Treatment with GLP-1 Receptor Agonists. In: Bonora E, DeFronzo R, editors. Diabetes. Epidemiology, Genetics, Pathogenesis, Diagnosis, Prevention, and Treatment. Endocrinology. Cham: Springer; 2018. doi:10.1007/978-3-319-27317-4_20-1.

Nauck MA. The rollercoaster history of using physiological and pharmacological properties of incretin hormones to develop diabetes medications with a convincing benefit-risk relationship. Metabolism. 2020 Feb;103:154031. doi:10.1016/j.metabol.2019.154031.v

Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab. 2021 Apr;46:101102. doi:10.1016/j.molmet.2020.101102.

Nauck MA, Kemmeries G, Holst JJ, Meier JJ. Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes. 2011 May;60(5):1561-5. doi:10.2337/db10-0474.

Graaf Cd, Donnelly D, Wootten D, et al. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol Rev. 2016 Oct;68(4):954-1013. doi:10.1124/pr.115.011395.

Umapathysivam MM, Lee MY, Jones KL, et al. Comparative effects of prolonged and intermittent stimulation of the glucagon-like peptide 1 receptor on gastric emptying and glycemia. Diabetes. 2014 Feb;63(2):785-90. doi:10.2337/db13-0893.

Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012 Dec;8(12):728-42. doi:10.1038/nrendo.2012.140.

Huthmacher JA, Meier JJ, Nauck MA. Efficacy and Safety of Short- and Long-Acting Glucagon-Like Peptide 1 Receptor Agonists on a Background of Basal Insulin in Type 2 Diabetes: A Meta-analysis. Diabetes Care. 2020 Sep;43(9):2303-2312. doi:10.2337/dc20-0498.

Münzel T, Daiber A, Mülsch A. Explaining the phenomenon of nitrate tolerance. Circ Res. 2005 Sep 30;97(7):618-28. doi:10.1161/01.RES.0000184694.03262.6d.

Larsen J, Hylleberg B, Ng K, Damsbo P. Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diabetes Care. 2001 Aug;24(8):1416-21. doi:10.2337/diacare.24.8.1416.v

Jelsing J, Vrang N, Hansen G, Raun K, Tang-Christensen M, Knudsen LB. Liraglutide: short-lived effect on gastric emptying -- long lasting effects on body weight. Diabetes Obes Metab. 2012 Jun;14(6):531-8. doi:10.1111/j.1463-1326.2012.01557.x.

Nishizawa M, Nakabayashi H, Uehara K, Nakagawa A, Uchida K, Koya D. Intraportal GLP-1 stimulates insulin secretion predominantly through the hepatoportal-pancreatic vagal reflex pathways. Am J Physiol Endocrinol Metab. 2013 Aug 1;305(3):E376-87. doi:10.1152/ajpendo.00565.2012.

Zhang Y, Sun B, Feng D, et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature. 2017 Jun 8;546(7657):248-253. doi:10.1038/nature22394.

Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J Clin Invest. 2014 Oct;124(10):4223-6. doi:10.1172/JCI78371.

Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993 Aug;36(8):741-4. doi:10.1007/BF00401145.

Jazayeri A, Rappas M, Brown AJH, et al. Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature. 2017 Jun 8;546(7657):254-258. doi:10.1038/nature22800.

Song G, Yang D, Wang Y, et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature. 2017 Jun 8;546(7657):312-315. doi:10.1038/nature22378.

Wootten D, Reynolds CA, Smith KJ, et al. The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism. Cell. 2016 Jun 16;165(7):1632-1643. doi:10.1016/j.cell.2016.05.023.

Preiss D, Dawed A, Welsh P, et al; DIRECT consortium group. Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes. Diabetes Obes Metab. 2017 Mar;19(3):356-363. doi:10.1111/dom.12826.

Davies M, Pieber TR, Hartoft-Nielsen ML, Hansen OKH, Jabbour S, Rosenstock J. Effect of Oral Semaglutide Compared With Placebo and Subcutaneous Semaglutide on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA. 2017 Oct 17;318(15):1460-1470. doi:10.1001/jama.2017.14752.

Sonne N, Karsdal MA, Henriksen K. Mono and dual agonists of the amylin, calcitonin, and CGRP receptors and their potential in metabolic diseases. Mol Metab. 2021 Apr;46:101109. doi:10.1016/j.molmet.2020.101109.

Wynne K, Park AJ, Small CJ, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond). 2006 Dec;30(12):1729-36. doi:10.1038/sj.ijo.0803344.v

Sadry SA, Drucker DJ. Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat Rev Endocrinol. 2013 Jul;9(7):425-33. doi:10.1038/nrendo.2013.47.

Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013 Oct 30;5(209):209ra151. doi:10.1126/scitranslmed.3007218.

Frias JP, Bastyr EJ 3rd, Vignati L, et al. The Sustained Effects of a Dual GIP/GLP-1 Receptor Agonist, NNC0090-2746, in Patients with Type 2 Diabetes. Cell Metab. 2017 Aug 1;26(2):343-352.e2. doi:10.1016/j.cmet.2017.07.011.

Larsen AT, Gydesen S, Sonne N, Karsdal MA, Henriksen K. The dual amylin and calcitonin receptor agonist KBP-089 and the GLP-1 receptor agonist liraglutide act complimentarily on body weight reduction and metabolic profile. BMC Endocr Disord. 2021 Jan 7;21(1):10. doi:10.1186/s12902-020-00678-2.

Finan B, Yang B, Ottaway N, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2015 Jan;21(1):27-36. doi:10.1038/nm.3761.

Kalra S, Baruah MP, Sahay RK, Unnikrishnan AG, Uppal S, Adetunji O. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future. Indian J Endocrinol Metab. 2016 Mar-Apr;20(2):254-67. doi:10.4103/2230-8210.176351.

Zhao L, Chen Y, Xia F, et al. A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota. Front Endocrinol (Lausanne). 2018 May 17;9:233. doi:10.3389/fendo.2018.00233.

Milicevic Z, Anglin G, Harper K, et al. Low incidence of anti-drug antibodies in patients with type 2 diabetes treated with once-weekly glucagon-like peptide-1 receptor agonist dulaglutide. Diabetes Obes Metab. 2016 May;18(5):533-6. doi:10.1111/dom.12640.

Buse JB, Garber A, Rosenstock J, et al. Liraglutide treatment is associated with a low frequency and magnitude of antibody formation with no apparent impact on glycemic response or increased frequency of adverse events: results from the Liraglutide Effect and Action in Diabetes (LEAD) trials. J Clin Endocrinol Metab. 2011 Jun;96(6):1695-702. doi:10.1210/jc.2010-2822.

Mehta A, Marso SP, Neeland IJ. Liraglutide for weight management: a critical review of the evidence. Obes Sci Pract. 2017 Mar;3(1):3-14. doi:10.1002/osp4.84.

Chung JW, Hartzler ML, Smith A, Hatton J, Kelley K. Pharmacological Agents Utilized in Patients With Type-2 Diabetes: Beyond Lowering A1c. P T. 2018 Apr;43(4):214-227.

Bond A. Exenatide (Byetta) as a novel treatment option for type 2 diabetes mellitus. Proc (Bayl Univ Med Cent). 2006 Jul;19(3):281-4. doi:10.1080/08998280.2006.11928181.

Rigato M, Fadini GP. Comparative effectiveness of liraglutide in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes. 2014 Mar 18;7:107-20. doi:10.2147/DMSO.S37644.

Lund A, Knop FK, Vilsbøll T. Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes: differences and similarities. Eur J Intern Med. 2014 Jun;25(5):407-14. doi:10.1016/j.ejim.2014.03.005.v

Ahrén B. Glucagon-like peptide-1 receptor agonists for type 2 diabetes: A rational drug development. J Diabetes Investig. 2019 Mar;10(2):196-201. doi:10.1111/jdi.12911.

Dungan K, Buse JB. Glucagon-Like Peptide 1-Based Therapies for Type 2 Diabetes: A Focus on Exenatide. Clin Diabetes. 2005;23:56–62. doi:10.2337/diaclin.23.2.56.

Painter NA, Morello CM, Singh RF, McBane SE. An evidence-based and practical approach to using Bydureon™ in patients with type 2 diabetes. J Am Board Fam Med. 2013 Mar-Apr;26(2):203-10. doi:10.3122/jabfm.2013.02.120174.

Scheen AJ. Dulaglutide (Trulicity®), a new once-weekly agonist of glucagon-like peptide-1 receptors for type 2 diabetes. Rev Med Liege. 2016 Mar;71(3):154-60. (in French).

Poole RM, Nowlan ML. Albiglutide: first global approval. Drugs. 2014 Jun;74(8):929-38. doi:10.1007/s40265-014-0228-2.

Del Prato S, Choi IY, Keng J. Efpeglenatide, a Long-Acting Glucagon-Like Peptide-1 Receptor Agonist—Immunogenicity Profile Based on Preclinical and Clinical Studies. Diabetes. 2018; 67(1). doi:10.2337/db18-1097-P.v

Nauck MA, Meier JJ. Incretin hormones: Their role in health and disease. Diabetes Obes Metab. 2018 Feb;20 Suppl 1:5-21. doi:10.1111/dom.13129.

Nauck MA. The rollercoaster history of using physiological and pharmacological properties of incretin hormones to develop diabetes medications with a convincing benefit-risk relationship. Metabolism. 2020 Feb;103:154031. doi:10.1016/j.metabol.2019.154031.

Arora T, Bäckhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016 Oct;280(4):339-49. doi:10.1111/joim.12508.

Yamane S, Inagaki N. Regulation of glucagon-like peptide-1 sensitivity by gut microbiota dysbiosis. J Diabetes Investig. 2018 Mar;9(2):262-264. doi:10.1111/jdi.12762.

Grasset E, Puel A, Charpentier J, et al. A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance through an Enteric NO-Dependent and Gut-Brain Axis Mechanism. Cell Metab. 2017 May 2;25(5):1075-1090.e5. doi:10.1016/j.cmet.2017.04.013.

Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 2011 Aug;6(3):209-40. doi:10.1007/s12263-011-0229-7.

He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017 Oct 25;7:54. doi:10.1186/s13578-017-0183-1.

Mahboobi S, Rahimi F, Jafarnejad S. Effects of Prebiotic and Synbiotic Supplementation on Glycaemia and Lipid Profile in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Adv Pharm Bull. 2018 Nov;8(4):565-574. doi:10.15171/apb.2018.065.

Prybyla OV. Pharmacokinetic characteristics and morphometric effects of sodium-glucose contransporter-2 inhibitors in men and women with type 2 diabetes mellitus (literature review and own results). Mìžnarodnij endokrinologìčnij žurnal. 2021;17(4):35-45. doi:10.22141/2224-0721.17.4.2021.237342. (in Ukrainian).

Tanase DM, Gosav EM, Neculae E, et al. Role of Gut Microbiota on Onset and Progression of Microvascular Complications of Type 2 Diabetes (T2DM). Nutrients. 2020 Dec 2;12(12):3719. doi:10.3390/nu12123719.