Diabetes mellitus: the role of genetic factors in the onset of the disease
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our edition uses the copyright terms of Creative Commons for open access journals.
Authors, who are published in this journal, agree with the following terms:
- The authors retain rights for authorship of their article and grant to the edition the right of first publication of the article on a Creative Commons Attribution 4.0 International License, which allows others to freely distribute the published article, with the obligatory reference to the authors of original works and original publication in this journal.
- Directing the article for the publication to the editorial board (publisher), the author agrees with transmitting of rights for the protection and using the article, including parts of the article, which are protected by the copyrights, such as the author’s photo, pictures, charts, tables, etc., including the reproduction in the media and the Internet; for distributing; for the translation of the manuscript in all languages; for export and import of the publications copies of the writers’ article to spread, bringing to the general information.
- The rights mentioned above authors transfer to the edition (publisher) for the unlimited period of validity and on the territory of all countries of the world.
- The authors guarantee that they have exclusive rights for using of the article, which they have sent to the edition (publisher). The edition (the publisher) is not responsible for the violation of given guarantees by the authors to the third parties.
- The authors have the right to conclude separate supplement agreements that relate to non-exclusive distribution of their article in the form in which it had been published in the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.
- The policy of the journal permits and encourages the publication of the article in the Internet (in institutional repository or on a personal website) by the authors, because it contributes to productive scientific discussion and a positive effect on efficiency and dynamics of the citation of the article.
References
McTaggart JS, Clark RH, Ashcroft FM. The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. J Physiol. 2010;588(Pt 17):3201-9. doi: 10.1113/jphysiol.2010.191767.
Li YY. The KCNJ11 E23K gene polymorphism and type 2 diabetes mellitus in the Chinese Han population: a meta-analysis of 6,109 subjects. Mol Biol Rep. 2013;40(1):141-6. doi: 10.1007/s11033-012-2042-9. Epub 2012 Oct 11.
Zhou D., Zhang D, Liu Y et al. The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population. J Hum Genet. 2009;54(7):433-5. doi: 10.1038/jhg.2009.54. Epub 2009 Jun 5.
Phani NM, Guddattu V, Bellampalli R et al. Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study. PLoS One. 2014;9(9):e107021. doi: 10.1371/journal.pone.0107021. eCollection 2014.
Greeley SA, Zielinski MC, Poudel A et al. Case Report: Preservation of Reduced Numbers of Insulin-Positive Cells in Sulfonylurea-Unresponsive KCNJ11-related Diabetes. J Clin Endocrinol Metab. 2016:jc20162826. [Epub ahead of print]
Lee JK, Kim K, Ahn Y, Yang M, Lee JE. Habitual coffee intake, genetic polymorphisms, and type 2 diabetes. Eur J Endocrinol. 2015;172(5):595-601. doi: 10.1530/EJE-14-0805. Epub 2015 Mar 9.
Florez JC, Hirschhorn J, Altshuler D. The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet. 2003;4:257-91.
Rotter J, Vadheim CM, Raffel LJ, Rimoin DL. Genetics, diabetes mellitus heterogeneity, and coronary heart disease. Prog Clin Biol Res. 1984;147:445-78.
Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia. 1987;30(10):763-8.
Maggie MH, Piriya Y, Kwan YC, Subashini K, James DJ, Clee SM. Diabetes genes identified by genome-wide association studies are regulated in mice by nutritional factors in metabolically relevant tissues and by glucose concentrations in islets. BMC Genet. 2013;14:10. doi: 10.1186/1471-2156-14-10.
Willemsen G., Ward KJ, Bell CG et al. The Concordance and Heritability of Type 2 Diabetes in 34,166 Twin Pairs From International Twin Registers: The Discordant Twin (DISCOTWIN) Consortium. Twin Res Hum Genet. 2015;18(6):762-71. doi: 10.1017/thg.2015.83.
Welsh KM. Maturity-Onset Diabetes of the Young: A Genetic Form of Diabetes in Children. J Pediatr Nurs. 2017 Jan-Feb;32:89-90. doi: 10.1016/j.pedn.2016.11.003.
Froguel P, Zouali H, Vionnet N et al. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med. 1993;328(10):697-702.
Antosik K, Gnyś P, Jarosz-Chobot P, Myśliwiec M, Szadkowska A, Małecki M, Młynarski W, Borowiec M. An analysis of the sequence of the BAD gene among patients with maturity-onset diabetes of the young (MODY). J Pediatr Endocrinol Metab. 2017 Jan 1;30(1):97-100. doi: 10.1515/jpem-2016-0239.
Szopa M, Ludwig-Gałęzowska A, Radkowski P et al. Genetic testing for monogenic diabetes using targeted next-generation sequencing in patients with maturity-onset diabetes of the young. Pol Arch Med Wewn. 2015;125(11):845-51. Epub 2015 Nov 9.
Brahm AJ, Wang G, Wang J, McIntyre AD, Cao H, Ban MR, Hegele RA. Genetic Confirmation Rate in Clinically Suspected Maturity-Onset Diabetes of the Young. Can J Diabetes. 2016;40(6):555-560. doi: 10.1016/j.jcjd.2016.05.010. Epub 2016 Sep 12.
Althari S, Gloyn AL. When is it MODY? Challenges in the Interpretation of Sequence Variants in MODY Genes. Rev Diabet Stud. 2015;12(3-4):330-48. doi: 10.1900/RDS.2015.12.330. Epub 2016 Feb 10.
Bonfanti DH, Alcazar LP, Arakaki PA, Martins LT, Agustini BC, de MoraesRego FG, Frigeri HR. ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem. 2015;48(7-8):476-82. doi: 10.1016/j.clinbiochem.2014.12.026. Epub 2015 Jan 10.
Riedel MJ, Boora P, Steckley D, de Vries G, Light PE. Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Diabetes. 2003;52(10):2630-5.
Huang KC, Li TM, Liu X et al. KCNQ1 Variants Associate with Hypertension in Type 2 Diabetes and Affect Smooth Muscle Contractility In Vitro. J Cell Physiol. 2017. doi: 10.1002/jcp.25775. [Epub ahead of print]
Zhang W, Wang H, Guan X, Niu Q, Li W. Variant rs2237892 of KCNQ1 Is Potentially Associated with Hypertension and Macrovascular Complications in Type 2 Diabetes Mellitus in A Chinese Han Population. Genomics Proteomics Bioinformatics. 2015;13(6):364-70. doi: 10.1016/j.gpb.2015.05.004. Epub 2015 Dec 8.
Chen Z, Zhang X, Ma G, Qian Q, Yao Y. Association study of four variants in KCNQ1 with type 2 diabetes mellitus and premature coronary artery disease in a Chinese population. Mol Biol Rep. 2010;37(1):207-12. doi: 10.1007/s11033-009-9597-0. Epub 2009 Jul 3.
Singh S. The genetics of type 2 diabetes mellitus: A review. J Sci Res. 2011;55:35-48.
Pranavchand R, Reddy BM. Genomics era and complex disorders: Implications of GWAS with special reference to coronary artery disease, type 2 diabetes mellitus, and cancers. J Postgrad Med. 2016;62(3):188-98. doi: 10.4103/0022-3859.186390.
Grant SF, Thorleifsson G, Reynisdottir I et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320-3.
Tong Y, Lin Y, Zhang Y, Yang J, Zhang Y, Liu H, Zhang B. Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med Genet. 2009;10:15. doi: 10.1186/1471-2350-10-15.
Ali O. Genetics of type 2 diabetes. World J Diabetes. 2013;4(4):114-23.
Ambati S, Yu P, McKinney EC, Kandasamy MK, Hartzell D, Baile CA, Meagher RB. Adipocyte nuclei captured from VAT and SAT. BMC Obes. 2016;3:35. doi: 10.1186/s40608-016-0112-6. eCollection 2016.
Yates T, Davies MJ, Henson J et al. Effect of the PPARG2 Pro12Ala Polymorphism on Associations of Physical Activity and Sedentary Time with Markers of Insulin Sensitivity in Those with an Elevated Risk of Type 2 Diabetes. PLoS One. 2015;10(5):e0124062. doi: 10.1371/journal.pone.0124062. eCollection 2015.
Tavares V, Hirata RD, Rodrigues AC et al. Association between Pro12Ala polymorphism of the PPAR-gamma2 gene and insulin sensitivity in Brazilian patients with type-2 diabetes mellitus. Diabetes Obes Metab. 2005;7(5):605-11.
Tönjes A, Stumvoll M. The role of the Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma in diabetes risk. Curr Opin Clin Nutr Metab Care. 2007;10(4):410-4.
Stumvoll M, Häring H. The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism. Diabetes. 2002;51(8):2341-7.
Celi FS, Shuldiner AR. The role of peroxisome proliferator-activated receptor gamma in diabetes and obesity. Curr Diab Rep. 2002;2(2):179-85.
Majid M, Masood A, Kadla SA, Hameed I, Ganai BA. Association of Pro12Ala Polymorphism of Peroxisome Proliferator-Activated Receptor gamma 2 (PPARγ2) Gene with Type 2 Diabetes Mellitus in Ethnic Kashmiri Population. Biochem Genet. 2016. [Epub ahead of print]
Malecki MT, Frey J, Klupa T, Skupien J, Walus M, Mlynarski W, Sieradzki J. The Pro12Ala polymorphism of PPARgamma2 gene and susceptibility to type 2 diabetes mellitus in a Polish population. Diabetes Res Clin Pract. 2003;62(2):105-11.
Priya SS, Sankaran R, Ramalingam S, Sairam T, Somasundaram LS. Genotype Phenotype Correlation of Genetic Polymorphism of PPAR Gamma Gene and Therapeutic Response to Pioglitazone in Type 2 Diabetes Mellitus- A Pilot Study. J Clin Diagn Res. 2016;10(2):FC11-4. doi: 10.7860/JCDR/2016/16494.7331. Epub 2016 Feb 1.
Mato EP, Pokam-Fosso PE, Atogho-Tiedeu B et al. The Pro12Ala polymorphism in the PPAR-γ2 gene is not associated to obesity and type 2 diabetes mellitus in a Cameroonian population. BMC Obes. 2016;3:26. doi: 10.1186/s40608-016-0104-6. eCollection 2016.
Kasim NB, Huri HZ, Vethakkan SR, Ibrahim L, Abdullah BM. Genetic polymorphisms associated with overweight and obesity in uncontrolled Type 2 diabetes mellitus. Biomark Med. 2016;10(4):403-15. doi: 10.2217/bmm-2015-0037. Epub 2016 Mar 21.
Montagnana M, Fava C, Nilsson PM et al. The Pro12Ala polymorphism of the PPARG gene is not associated with the metabolic syndrome in an urban population of middle-aged Swedish individuals. Diabet Med. 2008;25(8):902-8. doi: 10.1111/j.1464-5491.2008.02510.x.
Tellechea ML, Aranguren F, Pérez MS, Cerrone GE, Frechtel GD, Taverna MJ. Pro12Ala polymorphism of the peroxisome proliferatoractivated receptor-gamma gene is associated with metabolic syndrome and surrogate measures of insulin resistance in healthy men: interaction with smoking status. Circ J 2009;73(11):2118-24. Epub 2009 Sep 10.
Sokolova EA, Bondar IA, Shabelnikova OY, Pyankova OV, Filipenko ML. Replication of KCNJ11 (p.E23K) and ABCC8 (p.S1369A) Association in Russian Diabetes Mellitus 2 Type Cohort and Meta-Analysis. PLoS One. 2015;10(5):e0124662. doi: 10.1371/journal.pone.0124662. eCollection 2015.
Florez JC, Burtt N, de Bakker P et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes. 2004;53(5):1360-8.
Andrikopoulos S, Fam BC, Holdsworth A et al. Identification of ABCC8 as a contributory gene to impaired early-phase insulin secretion in NZO mice. J Endocrinol. 2016;228(1):61-73. doi: 10.1530/JOE-15-0290. Epub 2015 Oct 22.
Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus. J Diabetes Res. 2015;2015:908152. doi: 10.1155/2015/908152. Epub 2015 Sep 13.
Rozenkova K, Malikova J, Nessa A et al. High Incidence of Heterozygous ABCC8 and HNF1A Mutations in Czech Patients With Congenital Hyperinsulinism. J Clin Endocrinol Metab. 2015;100(12):E1540-9. doi: 10.1210/jc.2015-2763. Epub 2015 Oct 2.
Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D, Beddington RS. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development. 2000;127(11):2433-45. PMID: 10804184.
Rothová M, Hölzenspies JJ, Livigni A, Villegas SN, Brickman JM. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors. Curr Protoc Stem Cell Biol. 2016;36:1G.3.1-12. doi: 10.1002/9780470151808.sc01g03s36.
Zhang J, McKenna LB, Bogue CW, Kaestner KH. The diabetes gene Hhex maintains δ-cell differentiation and islet function. Genes Dev. 2014;28(8):829-34. doi: 10.1101/gad.235499.113.
Dimas AS, Lagou V, Barker A et al. MAGIC Investigators. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63(6):2158-71. doi: 10.2337/db13-0949. Epub 2013 Dec 2.
Jonsson A, Ladenvall C, Ahluwalia TS et al. Effects of common genetic variants associated with type 2 diabetes and glycemic traits on α- and β-cell function and insulin action in humans. Diabetes. 2013;62(8):2978-83. doi: 10.2337/db12-1627. Epub 2013 Apr 4.
Ali S, Nafis S, Kalaiarasan P, Rai E, Sharma S, Bamezai RN. Understanding Genetic Heterogeneity in Type 2 Diabetes by Delineating Physiological Phenotypes: SIRT1 and its Gene Network in Impaired Insulin Secretion. Rev Diabet Stud. 2016;13(1):17-34. doi: 10.1900/RDS.2016.13.17. Epub 2016 May 10.
Hindy G, Mollet IG, Rukh G, Ericson U, Orho-Melander M. Several type 2 diabetes-associated variants in genes annotated to WNT signaling interact with dietary fiber in relation to incidence of type 2 diabetes. Genes Nutr. 2016;11:6. doi: 10.1186/s12263-016-05. eCollection 2016.
Kong X, Xing X, Hong J, Zhang X, Yang W. Genetic variants associated with lean and obese type 2 diabetes in a Han Chinese population: A case-control study. Medicine (Baltimore). 2016;95(23):e3841. doi: 10.1097/MD.0000000000003841.
Fan R, Wang Y, Chiu CY et al. Meta-analysis of Complex Diseases at Gene Level with Generalized Functional Linear Models. Genetics. 2016;202(2):457-70. doi: 10.1534/genetics.115.180869. Epub 2015 Dec 29.
Mansoori Y, Daraei A, Naghizadeh MM, Salehi R. The HHEX rs1111875A/G gene polymorphism is associated with susceptibility to type 2 diabetes in the Iranian population. Mol Biol (Mosk). 2015;49(4):601-9. doi: 10.7868/S0026898415040126.
Sharma R, Matharoo K, Kapoor R, Chopra H, Bhanwer AJ. Ethnic differences in CAPN10 SNP-19 in type 2 diabetes: a North-West Indian case control study and evidence from meta-analysis. Genet Res (Camb). 2013;95(5):146-55. doi: 10.1017/S0016672313000207.
Costa V, Federico A, Pollastro C, Ziviello C, Cataldi S, Formisano P, Ciccodicola A. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes. Int J Mol Sci. 2016;17(7):E1008. doi: 10.3390/ijms17071008.
Pollastro C, Ziviello C, Costa V, Ciccodicola A. Pharmacogenomics of Drug Response in Type 2 Diabetes: Toward the Definition of Tailored Therapies? PPAR Res. 2015;2015:415149. doi: 10.1155/2015/415149. Epub 2015 Jun 15.
Cui J, Xu X, Yin S, Chen F, Li P, Song C. Meta-analysis of the association between four CAPN10 gene variants and gestational diabetes mellitus. Arch Gynecol Obstet. 2016;294(3):447-53. doi: 10.1007/s00404-016-4140-8. Epub 2016 Jun 21.
Uma Jyothi K, Reddy BM. Gene-gene and gene-environment interactions in the etiology of type 2 diabetes mellitus in the population of Hyderabad, India. Meta Gene. 2015;5:9-20. doi: 10.1016/j.mgene.2015.05.001. eCollection 2015.
Loya Méndez Y, Reyes Leal G, Sánchez González A, Portillo Reyes V, Reyes Ruvalcaba D, Bojórquez Rangel G. SNP-19 genotypic variants of CAPN10 gene and its relation to diabetes mellitus type 2 in a population of Ciudad Juarez, Mexico. Nutr Hosp. 2014;31(2):744-50. doi: 10.3305/nh.2015.31.2.7729.
Yan ST, Li CL, Tian H et al. Association of calpain-10 rs2975760 polymorphism with type 2 diabetes mellitus: a meta-analysis. Int J Clin Exp Med. 2014;7(10):3800-7. eCollection 2014.
Li YY, Gong G, Geng HY et al. CAPN10 SNP43 G>A gene polymorphism and type 2 diabetes mellitus in the Asian population: a meta-analysis of 9353 participants. Endocr J. 2015;62(2):183-94. doi: 10.1507/endocrj.EJ14-0297. Epub 2014 Nov 8.
Maleki F, Haghani K, Shokouhi S, Mahmoodi K, Sayehmiri K, Mahdieh N, Bakhtiyari S. A case-control study on the association of common variants of CAPN10 gene and the risk of type 2 diabetes in an Iranian population. Clin Lab. 2014;60(4):663-70.
Pandurangan M, Hwang I, Orhirbat C, Jieun Y, Cho SH. The calpain system and diabetes. Pathophysiology. 2014;21(2):161-7. doi: 10.1016/j.pathophys.2014.01.003. Epub 2014 Mar 14.
Pánico P, Salazar AM, Burns AL, Ostrosky-Wegman P. Role of calpain-10 in the development of diabetes mellitus and its complications. Arch Med Res. 2014;45(2):103-15. doi: 10.1016/j.arcmed.2014.01.005. Epub 2014 Feb 4.
Wen J, Rönn T, Olsson A et al. Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One. 2010;5(2):e9153. doi: 10.1371/journal.pone.0009153.
Nikitin AG, Potapov VA, Brovkin AN et al. Association of the polymorphisms of the FTO, KCNJ11, SLC30A8 and CDKN2B genes with type 2 diabetes. Mol Biol (Mosk). 2015;49(1):119-28.
Campa D, Pastore M, Gentiluomo M et al. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget. 2016;7(35):57011-57020. doi: 10.18632/oncotarget.10935.
Campa D, Capurso G, Pastore M et al. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Sci Rep. 2016;6:39565. doi: 10.1038/srep39565.
Kong Y, Sharma RB, Nwosu BU, Alonso LC. Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia. 2016;59(8):1579-93. doi: 10.1007/s00125-016-3967-7. Epub 2016 May 7.
Pal A, Potjer TP, Thomsen SK et al. Loss-of-Function Mutations in the Cell-Cycle Control Gene CDKN2A Impact on Glucose Homeostasis in Humans. Diabetes. 2016;65(2):527-33. doi: 10.2337/db15-0602. Epub 2015 Nov 5.
Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab. 2015;26(4):176-84. doi: 10.1016/j.tem.2015.01.008. Epub 2015 Mar 3.
Keaton JM, Cooke Bailey JN, Palmer ND et al. A comparison of type 2 diabetes risk allele load between African Americans and European Americans. Hum Genet. 2014;133(12):1487-95. doi: 10.1007/s00439-014-1486-5. Epub 2014 Oct 2.
Shi J, Park JH, Duan J et al. MGS (Molecular Genetics of Schizophrenia) GWAS Consortium; GECCO (The Genetics and Epidemiology of Colorectal Cancer Consortium); GAME-ON/TRICL (Transdisciplinary Research in Cancer of the Lung) GWAS Consortium; PRACTICAL (PRostate cancer AssoCiation group To Investigate Cancer Associated aLterations) Consortium; PanScan Consortium; GAME-ON/ELLIPSE Consortium. Winner’s Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data. PLoS Genet. 2016;12(12):e1006493. doi: 10.1371/journal.pgen.1006493. eCollection 2016.
Billings1 LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci. 2010;1212: 59-77.
Rohayem J, Ehlers C, Wiedemann B. Jose C et al. Wolfram Syndrome Diabetes Writing Group. Diabetes and neurodegeneration in Wolfram syndrome: a multicenter study of phenotype and genotype. Diabetes Care. 2011;34(7):1503-10. doi: 10.2337/dc10-1937. Epub 2011 May 20.
Long J, Edwards T, Signorello LB, Cai Q, Zheng W, Shu XO, Blot WJ. Evaluation of genome-wide association study-identified type 2 diabetes loci in African Americans. Am J Epidemiol. 2012;176(11):995-1001. doi: 10.1093/aje/kws176. Epub 2012 Nov 9.
Chang S, Wang Z, Wu L, Lu X, Shangguan S, Xin Y, Li L, Wang L. Association between TCF7L2 Polymorphisms and Gestational Diabetes Mellitus: a Meta-Analysis. J Diabetes Investig. 2016. doi: 10.1111/jdi.12612. [Epub ahead of print]
Zhang L, Zhang M, Wang JJ et al. Association of TCF7L2 and GCG Gene Variants with Insulin Secretion, Insulin Resistance, and Obesity in New-onset Diabetes. Biomed Environ Sci. 2016;29(11):814-817. doi: 10.3967/bes2016.108.
Guan Y, Yan LH, Liu XY., Zhu XY, Wang SZ, Chen LM. Correlation of the TCF7L2 (rs7903146) polymorphism with an enhanced risk of type 2 diabetes mellitus: a meta-analysis. Genet Mol Res. 2016;15(3). doi: 10.4238/gmr.15037969.
Zhao Z, Wen W, Michailidou K et al. Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry. Cancer Causes Control. 2016;27(5):679-93. doi: 10.1007/s10552-016-0741-6. Epub 2016 Apr 6.
Erfanian S, Moradzadeh M, Solhjoo K, Jahromi AS. Data describing the association between rs266729 polymorphism inadiponectin promoter gene and Type 2 Diabetes Mellitus. Data Brief. 2016;9:1138-1140. eCollection 2016.
Li S, Wang X, Yang L, Yao S et al. Interaction between β-hexachlorocyclohexane and ADIPOQ genotypes contributes to the risk of type 2 diabetes mellitus in East Chinese adults. Sci Rep. 2016;6:37769. doi: 10.1038/srep37769.
Al Hannan FA, O’Farrell PA, Morgan MP, Tighe O, Culligan KG. Associations between single-nucleotide polymorphisms of ADIPOQ, serum adiponectin and increased type 2 diabetes mellitus risk in Bahraini individuals. East Mediterr Health J. 2016;22(8):611-618.
Gu HF, Abulaiti A, Ostenson CG, Humphreys K, Wahlestedt C, Brookes AJ, Efendic S. Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish caucasians. Diabetes. 2004;53Suppl 1:S31-5.
Vasseur F, Helbecque N, Dina C et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet. 2002;11(21):2607-14.
Gibson F, Froguel P. Genetics of the APM1 locus and its contribution to type 2 diabetes susceptibility in French Caucasians. Diabetes. 2004;53(11):2977-83.
Forrestel AC, Miedlich SU, Yurcheshen M, Wittlin SD, Sellix MT. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia. 2016 Dec 16. [Epub ahead of print]
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res. 2015;59(1):1-23. doi: 10.1111/jpi.12240. Epub 2015 Jun 6.
Peschke E, Bähr I, Mühlbauer E. Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int J Mol Sci. 2013;14(4):6981-7015. doi: 10.3390/ijms14046981.
Hardeland R. Melatonin and the pathologies of weakened or dysregulated circadian oscillators. J Pineal Res. 2017;62(1). doi: 10.1111/jpi.12377. Epub 2016 Nov 24.
Garaulet M, Gómez-Abellán P, Rubio-Sastre P, Madrid JA, Saxena R, Scheer FA. Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans. Metabolism. 2015;64(12):1650-7. doi: 10.1016/j.metabol.2015.08.003. Epub 2015 Aug 14.
Wang T, Liu H, Wang L et al. Zinc-Associated Variant in SLC30A8 Gene Interacts With Gestational Weight Gain on Postpartum Glycemic Changes: A Longitudinal Study in Women With Prior Gestational Diabetes Mellitus. Diabetes. 2016;65(12):3786-3793. Epub 2016 Sep 6.
Chabosseau P, Rutter GA. Zinc and diabetes. Arch Biochem Biophys. 2016;611:79-85. doi: 10.1016/j.abb.2016.05.022. Epub 2016 Jun 1.
Rutter GA, Chabosseau P, Bellomo EA et al. Intracellular zinc in insulin secretion and action: a determinant of diabetes risk? Proc Nutr Soc. 2016;75(1):61-72. Epub 2015 Sep 14.
Fan M, Li W, Wang L et al. Association of SLC30A8 gene polymorphism with type 2 diabetes, evidence from 46 studies: a meta-analysis. Endocrine. 2016;53(2):381-94. doi: 10.1007/s12020-016-0870-4. Epub 2016 Feb 1.
Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19(3):1720-30.
Lee S, Norheim F, Langleite TM et al. Effect of energy restriction and physical exercise intervention on phenotypic flexibility as examined by transcriptomics analyses of mRNA from adipose tissue and whole body magnetic resonance imaging. Physiol Rep. 2016 Nov;4(21):e13019.
Ren YY, Koch LG, Britton SL, Qi NR, Treutelaar MK, Burant CF, Li JZ. Selection-, age-, and exercise-dependence of skeletal muscle gene expression patterns in a rat model of metabolic fitness. Physiol Genomics. 2016;48(11):816-825. doi: 10.1152/physiolgenomics.00118.2015. Epub 2016 Sep 16.
Senatorova AS, Karachentsev YuI, Kravchun NA, Kazakov AV, Riga EA, Makeeva NI, Chaychenko TV. Saharnyiy diabet ot rebenka do vzroslogo [Diabetes from infants through adults]. Kharkov: HNMU; 2009. 260 p. (in Russian).
Velho G, Froguel P. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia. 1998;41(12):1511-1515. doi: 10.1007/s001250051098.
Gloyn AL, Weedon MN, Owen KR et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568-572. doi: 10.2337/diabetes.52.2.568.
Scott LJ, Mohlke KL, Bonnycastle LL et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341-1345.
Voight BF, Scott LJ, Steinthorsdottir V et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579-589. doi: 10.1038/ng.609.
Vionnet N, Hani EH, Dupont S et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome1q21–q24. Am J Hum Genet. 2000;67(6):1470-1480. doi: 10.1086/316887.
Humphreys K, Wahlestedt C, Brookes AJ, Efendic S. Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish Caucasians. Diabetes. 2004;53(1):31-35.
Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 2002;51(2):536-540. PMID: 11812766.
Zak KP, Popova VV. The prediction of type 1 diabetes development and diagnosis of its asymptomatic phase using autoantibodies to Langerhans islet long before the onset of the disease. International Journal of Endocrinology. 2016;7(79):11-21. DOI: 10.22141/2224-0721.7.79.2016.86414 (Ukrainian).
Humphreys K, Wahlestedt C, Brookes AJ, Efendic S. Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish Caucasians. Diabetes. 2004;53(1):31-35.
Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 2002;51(2):536-540. PMID: 11812766.
Grigorescu F, Attaoua R, Ait El Mkadem S, Radian S. Susceptibility genes for insulin resistance and type 2 diabetes. Genetics of diabetes. The Truth Unveiled. Ed Acad Rom, Bucureşti & S. Karger AG, Basel. 2010; 131-192.