ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

UDC 681.3.06 DOI: https://doi.org/10.30837/1TSS1.2021.16.012

D. ZOLOTARIOV

THE PLATFORM FOR CREATION OF EVENT-DRIVEN APPLICATIONS BASED
ON WOLFRAM MATHEMATICA AND APACHE KAFKA

The article is devoted to the study and development of the mechanism of interaction between Wolfram Mathematica programs and
Apache Kafka queue to provide the ability to build event-driven applications based on it. The subject of the research is the practical
principles of building a mechanism for interaction between Wolfram Mathematica and Apache Kafka through a proxy-server. The
purpose of the article is to develop and substantiate practical recommendations regarding the formation of proxy-server and a
mechanism for its work to publishing messages to the Apache Kafka queue and reading messages from it for programs of the
mathematical processor Wolfram Mathematica, which will make it possible to build event-driven applications. The tasks are: to
determine the mechanism of such interaction, prove the choice of tools for its implementation, create and test the obtained results. The
research used the following tools: Apache Kafka, Kafkacat, servers Ubuntu 20 LTS, the method of developing the Wolfram
Mathematica package. The results of the research: the mechanism of interaction between Wolfram Mathematica and Apache Kafka
through a proxy-server was determined and the corresponding toolkit was created on its basis in the form of two Mathematica
packages, which are built on using bash-scripts, Apache Kafka and third-party Kafkacat software. The first - for use on the end user's
computer, the second — on a compute server with a remote Mathematica kernel. It is confirmed that the Mathematica processor is
currently not suitable in its pure form for real-time data analysis. Conclusions. Practical recommendations have been developed and
substantiated regarding the formation of the mechanism of interaction between the Wolfram Mathematica mathematical processor and
the Apache Kafka queue manager through a proxy-server for the possibility of working in two directions with the queue: publishing
messages and reading them. A toolkit for such interaction in the form of Mathematica packages has been created, their capabilities

have been demonstrated. The economic benefit of using the described tools is shown. Future ways of its improvement are given.
Keywords: event-driven applications; queue manager; mathematical processor; saving resources and funds; cloud technologies;

Kafka; Mathematica.

Introduction

The rapid development of distributed data processing
and the transition in the construction of applications from
monolithic architecture to service-oriented [1], and later
micro service [2-4], which focuses on event processing (or
messages), in recent years has led to improvement of real-
time or near-real-time data transmission facilities,
including such as queue managers or message brokers.
One of the most common, refractory and powerful of them
is Apache Kafka, which is demonstrated, for example, in
[5-6]. It is able not only to dynamically adapt to the load
from the queue customers, but also to scale vertically and
horizontally.

Event-oriented software architecture is increasingly
being implemented outside of commercial products. One
such promising area is the processing of message flow by
mathematical processors, which allows you to use their
wide range of tools for data analysis: for example,
developed and intensively developing interface for the
interaction of MathWorks MATLAB with Kafka [7].

For the Wolfram Mathematica processor, which is
also one of the world leaders in the field of intelligent data
processing, this urgent task was solved in [8] - developed
a mechanism for publishing messages and reading them
from the Kafka queue. But the approaches outlined there
are based on the local launch of applications that have the
following shortcomings. Each of these approaches
requires the installation and configuration of several
complex components on the Kafka queue client computer.
In addition, a direct connection to the Kafka cluster is
associated with the following complications: each client
needs to know the IP addresses of bootstrap servers, have
authorization data on all servers in the cluster, and know
all the necessary settings to work with them. This leads to

such operational problems. First, when you change the IP
addresses, ports, or other network settings of any of the
Kafka cluster servers, and especially the bootstrap servers,
you must make these changes on all clients. Second,
when changing authentication settings, these changes must
also be made on all clients. And, thirdly, when updating
the version of Kafka, it may also be necessary to update it
on all clients if it changes the data transfer protocol or
other critical properties of the interface, because this may
cause problems with interconnection, such as those
described in [9 -10].

These shortcomings in the complex lead to the
conclusion that such a system is unreliable and can be
operated for a long time only when there is no need to
make any changes to the Kafka cluster, and if necessary -
can be used only with a small number of Kafka customers
due to the large amount of work that needs to be
performed synchronously in the event of changes in
cluster settings.

This indicates that the task of building a reliable
mechanism for the interaction of Wolfram Mathematica
with Kafka remains unsolved. The most versatile way to
increase this reliability is to use the approach of building a
proxy server to centralize and hide all interaction settings
and provide the client with a simple interface.

Therefore, the aim of this article is to develop and
substantiate practical recommendations for the formation
of the mechanism of bidirectional interaction of Wolfram
Mathematica processor and queue manager Apache
Kafka, which should be as simple as possible for queue
clients, require a minimum of third-party applications,
have a maximum deployment speed. cost of service. The
task of the article is to identify the necessary elements of
such a mechanism, to provide an analysis of the functional
load for each of them, to justify the choice of tools for

© D. Zolotariov, 2021

Cyuacnuti cmamn HayKo8ux 00CLIOdCeHb ma mexnonozit 6 npomuciosocmi. 2021. Ne 2 (16)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

their construction, to create and test the obtained result.

Building an intermediary server

All of the above issues and disadvantages of using
Apache Kafka or Kafkacat locally as a queue client can be
solved with a single approach - using a proxy server that
hides all settings and gives clients a simple interface to
interact with the Kafka queue.

The purpose of transferring the complexity of the
client's interaction with the Kafka queue manager from the
user's computer to the Linux-based proxy server is to
solve the following tasks. First, centralizing the entire
Kafka queue connection mechanism in one place and
hiding all the details and settings. Second, guaranteeing
the security of the network connection by using a network
tunnel through the SSH channel from the end client to the
proxy server. This minimizes the applications that need to
be installed on the user's computer, reducing them to a
single SSH client. The proxy server also solves another
problem - incompatibility of the client and any of the
Kafka cluster servers due to protocol versions or other
differences - all settings are available at any time for
change by the administrator, and the server can be updated
and restarted at one time. thereby making changes for all
customers to queue together.

Important non-technical advantages of this approach
include cost savings - only one DevOps specialist is

required to monitor such a server, whose function can also
be performed by a Kafka cluster administrator.

The disadvantages of this approach include the lack
of support for modern data compression algorithms (zStd,
Snappy, and others) in the SSH tunnel. This can be
partially corrected by the LZ77's built-in SSH
compression algorithm. Tunnel security is achieved by
using crypto-strong passwords (less recommended) or
authorization keys. In contrast to the approach previously
discussed in [8], such a server has access to all Kafka
cluster servers, and therefore these servers can be easily
protected from unauthorized network connections via a
firewall.

In [8] it was proved that the use of third-party
software Kafkacat [11] to interact with the queue gives at
least an order of magnitude faster communication channel
of the queue client with the cluster than the standard
queue client Apache Kafka, and an order of magnitude
less computer resources for work. Therefore, it is worth
using it on the server, because each client launches a new
copy of the application for publishing or consuming
messages, and saving resources in this case is already very
significant. But this application at the time of writing does
not have the functionality to delete and create queues, so
these rare operations use standard Apache Kafka scripts.

The diagram of the system built on this approach is
shown below in fig. 1.

ﬁ

-

Proxy
PC server
Apache
e Kafka
_ SSH <> cluster
Mathematica m —

Kafkacat

4

Fig. 1. Connecting Mathematica to the Kafka queue cluster through a proxy server

The well-known SSH package PUTTY is used to
create an SSH tunnel [12]. Its significant features include
cross-platform and portable distribution with a pre-
configured connection profile, which hides from the end
user the need to know the network settings of the SSH
connection to the proxy server and greatly simplifies the
use.

The basic idea of how Mathematica interacts with a
proxy server is to open an SSH connection as a write
channel and use it to execute remote commands on the
proxy server. Such commands will be specially designed
bash scripts that will be responsible for: reading and
writing to the message queue - kafkaConsume.sh and

kafkaPublish.sh, getting a list of existing queues -
kafkaList.sh, deleting and creating queues -
kafkaDelete.sh and kafkaCreate.sh.

Each script, except kafkaList.sh for obvious reasons,
receives a queue name (variable "$ _ TOPIC" below the
text), and kafkaPublish.sh also the key and text of the
message published to the queue.

To simplify the configuration and ease of use of the
developed bash-scripts on the server, environment
variables $ KAFKA and $ BOOTSTRAP_SERVERS
have been added, which describe the path to the "/bin/"
subdirectory of the Kafka installation directory and the list
of Kafka bootstrap servers, respectively.

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

The kafkaConsume.sh, kafkaPublish.sh, and
kafkaL.ist.sh scripts use the Kafkacat plugin. An important
feature of this application is the default buffered output to
the standard stream (stdout). This prevents reading from
third-party applications like Mathematica. To disable this,
use the "-u" argument.

The central design of the script for reading messages
from the kafkaConsume.sh queue is:

kafkacat -C —J -u -q \

-b "$BOOTSTRAP_SERVERS"\
-t"${_TOPIC}"

The argument "-C" includes read mode, "-J" -
receive a message in full JSON-format, "-u" - switches to
unbuffered output mode, "-q" - disables the output of
service information, the latter - understandable in content.

Posting in a queue differs only in the first line, which
has the form:

echo "${ KEY}:${ VALUE}"|kafkacat -P -K: \

The argument "-P" includes the publishing mode, "-
K:" - includes the division of the key and the value of the
message by a colon.

The essence of the script kafkaList.sh, which is
responsible for obtaining a list of queues, is reflected by
the following construction:

kafkacat -L \
-b $BOOTSTRAP_SERVERS\
| egrep "“Ms+topic™ \
| sed -r "SI (A) T [ANTHSALS

This complexity is due to the fact that "kafkacat -L"
displays detailed information in queues, to get only the
names you need to separate them.

The kafkaDelete.sh and kafkaCreate.sh scripts use
the same ideas and constructions as set out in [8] and are
based on the standard Apache Kafka scripts due to the fact
that the Kafkacat application does not have such
functionality at the time of writing.

To increase the security of the described scripts, you
need to create and configure a separate Linux user for
Mathematica SSH clients on the proxy server.

Development of the Mathematica package

To build the described system, you also need to
develop a Wolfram Mathematica package for the client
side, which will use the developed bash-scripts on the side
of the proxy server for operations with messages and
queues.

By analogy with the Mathematica package [8], the
KafkaProxyServerLink package was developed. Its
structure of files and directories, shown in fig.2, is
completely repeated except for the added directory "bash",
which contains the above-developed bash-scripts that
implement interaction with the queue manager Kafka.

KafkaProxyServerLink
bash
A kafkaConsume.sh
£ kafkaCreate.sh
£ kafkaDelete.sh
£ kafkaList.sh
£ kafkaPublish.sh
Consume
Kernel
Produce

= KafkaProxyServerLink.m

Fig. 2. Mathematica directory structure for SSH connection to
proxy server

The "bash" subfolder must be uploaded to the proxy
server and the files in it can be executed by a user
connecting via SSH.

The interaction of the package with the queue differs
from [8] only by using the Write function instead of Run
to write to the stream (publish to the queue), which must
be opened using the OpenWrite function as follows:

SSHStream = OpenWrite[""!"'<> SSHPuttyCommand, FormatType->OutputForm, PageWidth->Infinity];

Opening a write stream via OpenWrite is important
because Mathematica can only have a thread for one
operation: read or write - a combination of them is not
possible. You should pay attention to the values of the
For-matType and PageWidth options when opening the
stream: the first sets the output of the string without
shielding and other modifications, the second - disables
automatic string transfers. The SSHPuttyCommand
variable stores the command to run the plink component
from the PUTTY program set with the parameters "-batch

-v -ssh -t -C -x -l <username> -i <path / to / id_rsa.ppk>
<ip: port>".

The open stream ID is stored in the global
SSHStream variable for use, and is closed by the exit
command from the SSH session:

Write[SSHStream, "'exit"];
The function which has the following look is

responsible for construction of correct term of a call of
bash-scripts with parameters.:

KafkaGetBashScript[name_, args___:Null] := Module[{path},

path =

FileNameJoin[{SSHKafkaBashPath,

name<>".sh"}, OperatingSystem->""Unix""];

Return[StringJoin[Riffle[{"'bash™’, path, args}, " "1 1;

Cyuacnuti cmamn HayKo8ux 00CLIOdCeHb ma mexnonozit 6 npomuciosocmi. 2021. Ne 2 (16)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Which takes the name of the script and optionally its
arguments through a comma, creates a full path to the
bash script on the proxy server in Unix notation (the
global variable SSHKaf-kaBashPath stores the path to the
directory of bash scripts on the server) and combines it
with arguments, separating them with spaces.

The use of the package in the Mathematica document
is completely similar to the option with local start [8]. The
JSON string returned by Kafkacat is processed in a similar
way.

Using the remote Mathematica kernel

Mathematica processor is built on a client-server
architecture with a platform-independent core [13].
Therefore, it is necessary to stop separately in case of use
of a remote kernel [14] on the computing server built on

the basis of Linux operating system which example can
serve [15].

If you combine two servers into one: the
Mathematica computing server and the proxy server for
Kafka, then the connection to the queue core processor
connection to the queue manager client will be local.

This allows you to combine the simplicity of the
local connection package [8] to the Kafka queue manager
client with the call from inside the bash scripts used in the
package for the proxy server. This will provide the
advantages of both packages without their disadvantages:
no need to install additional software on the client other
than PUTTY, the use of a fast application Kafkacat, direct
execution of the core of bash-scripts instead of SSH. Also,
obviously, you do not need a separate proxy server.

The system diagram for the computing server is
shown in fig. 3 below.

_\
Math server \
PC
Apache
Kafkacat e
H Kafka
I cluster
SSH
E tuunela Mathematica Kernel

" 0

Fig. 3. Connecting the Mathematica client to the Kafka cluster via a computing server

The differences are, first, the description of all paths
in the document using the FileNameJoin function, which
uses a directory delimiter based on kernel settings, rather
than Mathematica FrontEnd. Second, to use the Linux sh
shell instead of calling PUTTY for local bash scripts to run
on the server.

The package "KafkaRemoteKernelLocalLink" for
Mathematica created for this case is a wrapper for the one
developed above and has the following directory structure,
which is shown in fig. 4.

KafkaRemoteKernelLocalLink
Kernel

= KafkaRemoteKernellLocallLink.m

Fig. 4. The structure of the directories of the Mathematica
package with the computing server as an intermediary server

It automatically downloads the above package as a
dependency:

BeginPackage[''KafkaRemoteKernelLocalLink™,
{""KafkaProxyServerLink *'}]

And replaces its function of opening a stream for
reading or writing with one that uses the Linux application
sh, as mentioned above.

Thus, it is achieved that from the Mathematica
document both packages are identical in use.

Demonstration of work

To demonstrate the work of the developed tools for
building event-driven programs in Mathematica using an
intermediary server, we will conduct an identical [8]
experiment - generating an arbitrary number in the range
[-50.50], repeated 100 times with a delay of one second.

To implement the experiment on a local computer,
two Mathematica documents were created: a generator
and a reader. The reader has a local core processor, which
is allocated its own processor core for independent
operation, and uses the developed package
"KafkaProxyServerLink" to connect to the proxy server.
The generator is connected to a computing server, which
is built similarly to [15] and configured as an intermediary
server in accordance with the requirements set out in the

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

article, and uses the developed package "KafkaRe-
moteKernelLocalLink". DigitalOcean cloud technologies
were chosen as the platform, where servers based on
Ubuntu 20.04 LTS x64 OS were located. Choosing a
cloud service as a basis allowed you to quickly deploy
servers and change their configurations to meet the needs
of the task.

The content of the experiment is as follows: an
arbitrary number is generated on the publication side and
added to the end of the points array, which has a dynamic
update in the document, and is sent to the queue. At the
same time, the client-reader receives a message with this
number, adds it to its array, which automatically leads to

NN = 100;
Dynamic[Text[points]]

{-34, 9, -42, 15, 25, -14, -41, -2, 28, 49, 39, -28, 43, 26, 4, 42, 32, -20, 4,
g, -11, -8, 48, -41, 23, 2, 12, -38, -11, 39, 12, 30, 23, 49, -17, 24, 28, 37,

25, -11, 49, 36, 35, 24, -11, -12, 12, 33, -50, 47, 50, -1, 18, -11, 26, 32,
38, 12, 8, -9, -8, 20, 29, 28, 35, 18, -6, -5, -4, =20, 4, -30, 1§, 31)

KafkaClearTopic [kafkaTopic] ;

Do[
int = ToString[RandomInteger({-50, 30}]];
AppendTo[points, int];
KafkaPublish([kafkaTopic, ToString[i], int];

Pause[1];
, {1, NN};

KafkaPublishFinish[];

the restructuring of the graph based on it, which also has a
dynamic output. The graph is constructed by the ListPlot
function for the whole definition area, with the option
"InterpolationOrder -> 2", which makes the graph
smoother, but at the boundary points leads to values out of
the original range [-50.50], and serves as an additional
load on message processing.

Since the client can only connect to a queue that
already exists, the document with the publication of
messages that creates the queue was launched first,
followed by the reader's document. The result obtained at
the same time for both documents is shown in fig. 5.

50 s o I ' n
I, H' I |
i 1 1 L ‘n " A 1 i n il L i i 1 I I 1 1
fil 120/ | ([l W o 100
AR A
-25
|1 ' 0
“S0F
KafkaRead [
kafkaCallback ,
kafkaTopic
12

Fig. 5. Simultaneous publication (right) and reading (left) from the same queue

The figure above shows that the client-reader does
not lag behind the client-publisher. The main delay,
as in [8], is the updating of dynamic objects in the
document.

The experiment was repeated 15 times to exclude
measurement error, with one result — a delay on the
side of Mathematica Frontend, i.e. compilation [16] is
unlikely to solve this problem. This in turn confirms
the conclusions made in [8] that the Mathematica
matpack is not yet designed for real-time data
analysis.

Prospects for further development of the system

ready-made tools, which is described in the article, for the
fastest deployment.
Conclusions

Prospects for further development of the developed
tools are the following improvements.

To completely eliminate the need for
third-party client-side applications, it makes sense to
consider using Mathematica's built-in features
for SSH connections, starting with version 11.3:
RemoteConnect and RemoteRunProcess [17], which
could eventually replace the use of PuTTY
software.

On the side of the intermediary server — it seems
relevant to develop a Docker-container with built-in

The paper develops and substantiates practical
recommendations for the formation of the mechanism of
interaction between the mathematical processor Wolfram
Mathematica and the queue manager Apache Kafka using
an intermediary server to work in two directions:
publishing messages in the queue and consuming
messages from it. Appropriate tools have been created.

The mechanism is developed in two variants: use of
the intermediary server and combination of the last with
the calculation server for a remote kernel. The second
option allows you to have only one server for both
tasks.

It is shown that the toolkit developed in the article
allows you to easily build event-driven programs in
Mathematica that require client-only PUTTY applications
and data to connect to a single proxy server — that is, in
the most simplified way, with maximum deployment
speed on a new client and without maintenance needs by
centralizing all interaction with the Kafka cluster on the
proxy server. In addition, using a proxy server resolves the
incompatibility issue between the client and any of the

Cyuacnuti cmamn HayKo8ux 00CLIOdCeHb ma mexnonozit 6 npomuciosocmi. 2021. Ne 2 (16)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Kafka cluster servers due to protocol versions or other
differences due to its availability to change settings at any
time.

The economic benefit of using the described tools is
achieved by saving money on the maintenance of the
described system: to monitor the proxy server requires
only one DevOps specialist, whose function can be
performed by the administrator of the Kafka cluster, on

References

the client side such a specialist is not needed.
Also, significant economic benefits are achieved by
deploying an intermediary server in the cloud
infrastructure, where the cost of ownership is much lower
compared to real equipment and reduced to the time of its
actual use, and the time and cost of its modification are
the lowest.

1. Villamizar, M., Garcés, O., Ochoa, L. et al. (2017), "Cost comparison of running web applications in the cloud using

monolithic, microservice, and AWS
DOI: https://doi.org/10.1007/s11761-017-0208-y

Lambda

architectures", SOCA, Vol. 11, P. 233-247.

2. Gutiérrez—Fernandez, A. M., Resinas, M., Ruiz—Cortés, A. (2017), "Redefining a Process Engine as a Microservice
Platform", In: Dumas M., Fantinato M. (eds) Business Process Management Workshops. BPM 2016. Lecture Notes in
Business Information Processing, Vol. 281, Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-58457-7_19

3. Brogi, A., Canciani, A., Neri D., Rinaldi, L., Soldani, J. (2018), "Towards a Reference Dataset of Microservice-Based
Applications”, In: Cerone A., Roveri M. (eds) Software Engineering and Formal Methods. SEFM 2017. Lecture Notes in
Computer Science, Vol. 10729, Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-74781-1_16

4. Monteiro, D., Gadelha, R., Maia, P. H. M., Rocha, L. S., Mendonga, N. C. (2018), "Beethoven: An Event-Driven
Lightweight Platform for Microservice Orchestration”, In: Cuesta C., Garlan D., Pérez J. (eds) Software Architecture.
ECSA 2018. Lecture Notes in Computer Science, Vol. 11048, Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-

00761-4_13

5. GitHub (2020), "Ultimate Message Broker Comparison”, available at: https://ultimate-comparisons.github.io/ultimate-
message-broker-comparison/ (last accessed 10 December 2020).

6. G2 (2020), "Best Message Queue (MQ) Software in 2021: Compare Reviews on 40+ MQs", available at:
https://www.g2.com/categories/message-queue-mq (last accessed 10 December 2020).

7. GitHub (2020), "Mathworks-ref-arch/matlab-apache-kafka: MATLAB Interface for Apache Kafka", available at:
https://github.com/mathworks-ref-arch/matlab-apache-kafka (last accessed 10 December 2020).

8. Zolotariov, D. (2021), "The mechanism for creation of event-driven applications based on Wolfram Mathematica and

Apache Kafka", Innovative Technologies
DOI: https://doi.org/10.30837/ITSSI.2021.15.053
9. Stack Overflow (2020),

accessed 10 December 2020).
10.

and Scientific

"Kafka bootstrap-servers vs
https://stackoverflow.com/questions/41774446/kafka-bootstrap-servers-vs-zookeeper-in-kafka-console-consumer

Solutions for Industries, No. 1 (15), P.53-58.

available at:
(last

zookeeper in kafka-console-consumer”,

Stack Overflow (2020), "Apache Kafka - bootstrap-server vs zookeeper params in consumer console”, available at:

https://stackoverflow.com/questions/53954877/bootstrap-server-vs-zookeeper-params-in-consumer-console (last accessed

10 December 2020).

11. GitHub (2020), "Edenhill/kafkacat: Generic command line non-JVM Apache Kafka producer and consumer”, available at:
https://github.com/edenhill/kafkacat (last accessed 10 December 2020).

12. PuTTY (2020), "Download PuTTY - a free SSH and telnet client for Windows", available at: https://www.putty.org/ (last
accessed 10 December 2020).

13. Wolfram (2020), "Wolfram Mathematica: Modern technical calculations", available at:
https://www.wolfram.com/mathematica/ (last accessed 12 November 2020).

14. Wolfram Library Archive (2020), "Remote Kernel Strategies", available at:
https://library.wolfram.com/infocenter/Conferences/7250/ (last accessed 10 December 2020).

15. Zolotariov, D. (2020), "The distributed system of automated computing based on cloud infrastructure”, Innovative
Technologies and Scientific Solutions for Industries, No. 4 (14), P. 47-55.
DOI: https://doi.org/10.30837/ITSSI.2020.14.047

16. Zolotariov, D. A. (2020), Automation and optimization of scientific and engineering calculations in Wolfram Mathematica,
Kharkiv : FOP Panov A.M., ISBN: 978-617-7859-36-8 [In Ukrainian]

17. Wolfram Language Documentation (2020), "RemoteConnect", available at:

https://reference.wolfram.com/language/ref/RemoteConnect.html (last accessed 10 December 2020).

Received 13.04.2021

Bioomocmi npo aesmopis / Ceedenus 06 asmopax / About the Authors

3onotapsoB Jlennc OunekcilioBuay —

KaHayaat

Gbi3uKo-MaTeMaTHYHUX HayK, XapkiB, YKpaiHa,

email: denis@zolotariov.org.ua, ORCID: https://orcid.org/0000-0003-4907-7810.
3oJ0TapéB Jlennc AnexceeBUY — KaHIUIAT PU3NKO-MATEMAaTHYECKUX HAYK, XapbKOB, YKpauHa.
Zolotariov Denis — PhD (Physics and Mathematics Sciences), Kharkiv, Ukraine.

mailto:denis@zolotariov.org.ua
https://orcid.org/0000-0003-4907-7810

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

INVTAT®OPMA JUIA TIOBYAOBU KEPOBAHUX ITOAIAMHU JOAATKIB HA BA3I
WOLFRAM MATHEMATICA TA APACHE KAFKA

CraTTs IpUCBsUEHA JOCIIKEHHIO Ta po3po0lli MexaHi3My B3aemoil mporpam Wolfram Mathematica i3 MeHemKepoM dYepru
Apache Kafka st HagasHs MOKIMBOCTI MOOYJOBH Ha HOTO OCHOBI KEPOBAHHX MOisAMHU JoaTKiB. [IpeameTom JoCiiiuKeHHs
€ TpaKTHYHI 3acamu MoOymoBH MexaHismy B3aemonii Wolfram Mathematica i3 Apache Kafka depe3 cepsep-mocepeqHuk.
Mertolo cTaTTi € po3podka Ta OOIPYHTYBaHHS NPAaKTHYHHX PEKOMEHJAIii momo (opMyBaHHS cepBepa-TOCEepeIHHKa Ta
MexaHi3My ioro podortu ps my6iikanii nosinomiens y uepry Apache Kafka ta cioxuBanHs noBifoMieHs i3 Hei nporpamamu
MaTeMaTHyHoro nporecopy Wolfram Mathematica, o AacTh MOXKJIUBICTh MOOY/IOBU KEPOBAHUX MOJISAMH JOAATKIB Ha HOTO
OCHOBi. 3aBJaHHsl POOOTH: BU3HAUMTU MEXaHI3M Takoi B3aeMopii, OOIpyHTyBaTH BUOIp iHCTpYMEHTIB A Horo peainizauii,
CTBOPHUTH Ta MPOTECTYBATH OTPUMAHHUI pe3yibTaT. ¥ XOMAl JOCHIIPKECHHS BUKOPHUCTaHO 3aco0M: iH(opMalliiiHi TexXHOJOTIT
Apache Kafka, Kafkacat, cepsepa na 6a3i Ubuntu 20 LTS, cnoci6 no6yxosu makery Wolfram Mathematica. PesyabraTn
JIOCTIJDKCHHS: BU3HAuUeHW MexaHi3M B3aemonii Wolfram Mathematica i3 Apache Kafka uepe3 cepBep-mocepenHuk Ta
CTBOpEHUH BiANOBiAHUII iHCTpyMeHTapili Ha Horo OCHOBI y BMIULNI JBOX HakeriB Mathematica, mo noOynoBaHi Ha
BUKOpHCTaHHI bash-ckpunriB, Apache Kafka Ta croponnporo mnporpamuoro 3abesmeuenns Kafkacat. Ilepmmit — mis
BUKOPHCTAaHHS Ha KOMII'IOTEpi KiHIIEBOTO KII€HTA, NPYrHil — Ha cepBepi oOYMCieHb i3 BigmameHuM sapom Mathematica.
IIpotecroBana ix pobota. ITinTBepmKeHO, MO HA JaHUH MOMEHT MaTeMaTHYHHUIl mporecop Mathematica He MIXOAUTH Y
YUCTOMY BMIJIAII Ul aHAi3y JaHUX y peaidbHOMY daci. BucHoBku. Po3poGiieHi Ta oOIpyHTOBaHI IPpaKTUYHI peKOMEHIALIT
moa0 GopMyBaHHS MeXaHi3My B3a€MOJIii MaTeMaTHUHOTo mporecopy Wolfram Mathematica Ta MeHemkepy depru Apache
Kafka uepe3 cepBep-nocepesHuK Al MOXKIMBOCTI poOOTH Yy ABOX HampsMKax i3 4eproro: myOsikamii moBiomiieHb Ta iX
yutaHHsg. CTBOpEHHI IHCTpyMEHTapiil s Takoi B3a€MOJIi y BHIJISAI BOX makeTiB Mathematica, mpoaeMoHCTpoBaHi iX
MOXJIMBOCTI. [Toka3aHa eKOHOMIYHA BUIO/a BiJl BUKOPUCTAHHS OIMCAHOTO iHCTpyMeHTapito. HaBeneni MaitOyTHi muisixu Horo
BIOCKOHAJIEHHS.

KiiouoBi cjoBa: kepoBaHi NOMISIMH JIOAATKH; MEHEIKEPU Yeprd; MaTeMaTHYHMIl IIpoLecop; XMapHi TEXHOJIOTii;
ekoHoMis pecypciB Ta komTi; Kafka; Mathematica.

IVIAT®OPMA JUIA IOCTPOEHUA YIIPABJIAEMbIX COBBITUAMMA
MPUJIOKEHU HA BA3E WOLFRAM MATHEMATICA U APACHE KAFKA

CraThs TOCBSIICHA JNCCICIOBAHMIO M pa3pabOTKe MeXaHH3Ma B3auMopeiicTBus nporpamm Wolfram Mathematica ¢
meHemkepoMm odepenn Apache Kafka mma mpemocraBmeHns BO3MOXKHOCTH MOCTPOCHHS HA €r0 OCHOBE YIIPABIEMBIX
COOBITUSIMU HpHﬂOX(CHHﬁ. HpellMeTOM HCCJIICAOBAHUA SABJIAIOTCA MNPAKTUYCCKHUC TPUHIOUIIBI TOCTPOCHUSA MEXaHU3Ma
B3anmozeiicTeuss Wolfram Mathematica ¢ Apache Kafka gepes cepsep-mocpennuk. Ilesbio cratsn sBIseTCs pa3paboTKa H
000CHOBaHUS MPAKTHYECKUX PEKOMEHIAIMI OTHOCHTEIBEHO (OPMHPOBAHMS CEepBepa-IIOCPEAHUKA H MEXaHH3Ma €ro paboThI
Uit myOnuKanuu cooOmieHuit B ouepens Apache Kafka m uTeHms cooOmenunit W3 Hee Ui IPOTpaMM MaTEMaTHYECKOTO
npoueccopa Wolfram Mathematica, 4To AacT BO3MOXKHOCTb HOCTPOCHHUSI YNPABISEMbIX COOBITUSIMHU IPHIOXKEHUH Ha €ro
ocHoBe. 3agava pabOTHL: OIpENEeTUTh MEXaHH3M TaKOTO B3aMMOAEHCTBHS, OOOCHOBAaTh BBIOOP MHCTPYMEHTOB U €TO
peain3alyy, Co31aTh W MHPOTECTHPOBATH MOJYYCHHBIH pe3yibTaT. B Xome HCClICOBaHHMS MCIIOJIb30BAaHbl CPEACTBA:
uHpopmaimonnsie TexHonorun Apache Kafka, Kafkacat, cepsepa Ha 6a3ze Ubuntu 20 LTS, cnoco6 pa3paboTku makera
Wolfram Mathematica. Pe3yasTaT nccnenoBanus: onpeneieH MexaHusM B3aumMozeiicteus Wolfram Mathematica ¢ Apache
Kafka wepe3 cepBep-TlocpemHHK M CO3JaH COOTBETCTBYIOIIMI HWHCTPYMEHTapHii Ha €ro OCHOBE B BHJIE IBYX MaKETOB
Mathematica, KOTOpble NOCTPOEHBI Ha HCIONBb30BaHWH bash-ckpunrtoB, Apache Kafka m croponHero mporpamMmMHOTO
obecnieuennss Kafkacat. TlepBblii — /Ui MCTHIONB30BaHMA HAa KOMIIBIOTEPE KOHEYHOTO IOJIb30BATENs, BTOPOH — Ha cepBepe
BBIYHCIIEHHH C yIalneHHBIM sapoM Mathematica. IToaTBepxIeHO, 9TO Ha JAaHHBI MOMEHT MaTEeMaTHYECKHH IIporeccop
Mathematica He HOAXOAUT B YUCTOM BUJE JUIS aHANIN3a JAaHHBIX B peabHOM BpeMeHH. BbiBoabl. Pa3paboTansl 1 000CHOBAaHBI
IpaKTHYECKHE PEKOMEHIANH OTHOCHTENHHO (OPMHPOBAHMS MEXaHM3MAa B3aMMOJICHCTBHS MaTEMAaTHYECKOTO Mpolieccopa
Wolfram Mathematica nu menemxepa ouepenu Apache Kafka uepes cepBep-nmocpenHHK Ui BOZMOXHOCTH PabOTHI B JBYX
HaIpaBIEeHHUAX C OYepeNblo: ITyOIHKANN cOOOIEeHIH 1 X uTeHus. CO31aH MHCTPYMEHTapHi IS TaKOTO B3aWMOJCHCTBUS B
Buze nakeroB Mathematica, IpOAEMOHCTPUPOBAHBI UX BO3MOXKHOCTH. [IokazaHa 3KOHOMUYECKas BBITOJa OT HCIIOIb30BAHUS
OITICaHHOTO HHCTPYMEHTapus. [IpuBeneHs! Oy Aymye Iy TH ero yCOBEPIICHCTBOBAHUS.

KirioueBble ci10Ba: ympaBisieMble COOBITHSIMH NPHJIOKCHHS; MEHEMKEPBl OuYepelr; MaTeMaTHYECKHH IMpOLeccop;
00JIaYHBIC TEXHOIOTHH; SKOHOMHES pecypcoB H cpencTs; Kafka; Mathematica.

Fibnioepaghiuni onucu / Bibliographic descriptions
3omoraproB . O. [Tnardopma st moOyA0oBH KepoBaHHUX MOMAIsAMHU JoAaTKiB Ha 6a3i Wolfram Mathematica ta Apache Kafka.
Cyuacnuii cman — HAYKOSUX Q0CHiOdceHb — ma — mexHonozii 6 npomucaogocmi. 2021. Ne2(16). C.12-18.
DOI: https://doi.org/10.30837/ITSS1.2021.16.012

Zolotariov, D. (2021), "The platform for creation of event-driven applications based on Wolfram Mathematica and Apache
Kafka", Innovative Technologies and Scientific Solutions for Industries, No. 2 (16), P.12-18.
DOI: https://doi.org/10.30837/ITSS1.2021.16.012

https://doi.org/10.30837/ITSSI.2021.16.012

