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A METHOD FOR SOLVING THE CANONICAL PROBLEM OF TRANSPORT
LOGISTICS IN CONDITIONS OF UNCERTAINTY

Subject. The canonical task of transport logistics in the distributed system "suppliers - consumers" is considered. Goal. Development
of an accurate algorithm for solving this problem according to the probabilistic criterion in the assumption of the random nature of
transportation costs has been done. Tasks. 1. Development of an exact method for solving the problem of finding a plan that
minimizes the total cost of transportation in conditions when their costs are given by their distribution densities. 2. Development of a
method for solving the problem when the distribution density of the cost of transportation is not known. Methods. A computational
scheme for solving the problem is proposed, which is implemented by an iterative procedure for sequential improvement of the
transportation plan. The convergence of this procedure is proved. In order to accelerate the convergence of the computational
procedure to the exact solution, an alternative method is proposed based on the solution of a nontrivial problem of fractional nonlinear
programming. The method reduces the original complex problem to solving a sequence of simpler problems. The original problem is
supplemented by considering a situation that is important for practice when, in the conditions of a small sample of initial data, there is
no possibility of obtaining adequate analytical descriptions for the distribution densities of the random costs of transportation. To
solve the problem in this case, a minimax method is proposed for finding the best transportation plan in the most unfavorable
situation, when the distribution densities of the random cost of transportation are the worst. To find such densities, the modern
mathematical apparatus of continuous linear programming was used. Results. A mathematical model and a method for solving the
problem of transport logistics in conditions of uncertainty of the initial data are proposed. The desired plan is achieved using the
solution of the fractional nonlinear programming problem. Conclusions: The problem of forming a transportation plan is considered,
provided that their costs are random values. Also, a method for solving the problem of optimization of transportation for a situation
where the density of distribution of random cost cannot be correctly determined is considered.
Keywords: transport linear programming problem; random cost of transportation; fractional nonlinear optimization.

Introduction

In the totality of management tasks of the logistics
complex "production — delivery - consumption”, transport
tasks take the central place [1-3].

The transport linear programming problem is
traditionally formulated as follows [1-3]. There are m

suppliers of a homogeneous product and I consumers of
this product. A vector A=(a a, .. & ap) is
known, the components of which fix the capabilities of
suppliers, a vector B:(bl by .. bj bn), the
components of which determine the demand of
consumers, as well as a matrix C = (cij ) that specifies the

cost of delivering a unit of a product from suppliers to
consumers. It is required to find a non-negative matrix

X = (xij) that specifies a plan for the transportation of a

product from suppliers to consumers, minimizing the total
cost of transportation

m n
Li(X) =D cijXj 1
i=1 =1

and satisfying the constraints

n
inj gai, i=12,...m, (2)
j=1
m
Y % 2bj, j=12,..n, 3
i=1

XijZO, i:1,2,...,m, j=1,2,...,n. (4)
Methods and materials. Methods for solving this

problem are well known and implemented in widely used

mathematical packages (Mathcad, Excel, etc.)

It should be noted that the given model of the
transport problem does not fully satisfy the natural
requirements for the level of its adequacy. The point is
that in real conditions the parameters of this problem are
not deterministic values. In practice, the possibilities of
suppliers, the needs of consumers, and the cost of
transportation are random. It is clear that in this case the
solution of the problem by traditional methods that do not
take into account its probabilistic nature cannot be
accurate [4-8]. In this regard, the above canonical
mathematical model of the transport problem should be
properly modernized. The obvious applied nature of the
problem determines the relevance of the study.

Methods and materials

Methods for solving problems, the parameters of
which are random, are combined into a specific subclass
of general methods of mathematical programming, called
stochastic programming [9-13]. The technology for
solving such problems consists in constructing for each of
them a corresponding deterministic analogue using further
standard methods of mathematical programming. At the
same time, the mathematical expectation or variance of
the random value of the total cost of transportation is
usually used as an objective function in such problems
[11-13].

The solution to this problem using a more
informative objective function was proposed in [14]. In
this case, it was assumed that the cost of transportation are
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random values. Further, it is assumed that there is enough
real data to formulate plausible hypotheses about the
distribution laws of these quantities. At the same time,
since a large number of various factors independently
affect the cost of transporting goods, it is usually believed
that their joint influence, in accordance with the central
limit theorem of the theory of probability, leads to the
normality of the resulting random variables. In this regard,
a set of densities is introduced

exp —(Cij_n;ij )2 )
i 20ij

CICHE

i=12,.m, j=12,.,n

Of random values Cij . Therefore, the distribution

density of the random total cost of transportation

m n
R=L(X)=2 > cjxj hasthe form
i=1 j=1
P(R=Ry)= [ f(R)dR= jJ_l exp{
Ry Ry 2ros

2 w Ul
R— U
_¢ R — L J e 2du )
20'2 R_mz —u \/E R —my

f<R>=f(L(X))w%Gzexp{—(R‘mz) }

20%
where

my = Z Z Mj Xij »

i= j=1

m

=ZZ%U

i= j=1
The problem now consists in finding a set X = (xij)

that delivers the extreme value of some naturally chosen
function of density f(R) and satisfies constraints (2) -

(4). For example, a certain threshold value Rpy of the total

cost of transportation is set, the excess of which is
regarded as a sign of inefficiency of the corresponding
transportation plan. As the objective function of the
problem, it is natural to choose the probability that the
total cost of transportation will exceed the threshold. This
probability is equal to

®)

Oy o5

Thus, the original problem is transformed to the following: find a transportation plan satisfying the constraints X,
minimizing (5), or maximizing the lower limit in this integral, which is equal to

m n
=2 D M

Rp—m i=1 j=1
R(X)=——2%= ! 6
(x)=" : ©)
m n 2 2 2
2. 2. %X
i=1j=1
If the transportation plan X satisfies constraints (2) as equalities, then (6) can be transformed to the form
m n m n m n m n
7”22 Xij = 2 2 X ZZ( —mj jxij 2. 2 dipx
_ MMialj= i=1j=1 _i=lj=l _i=lj=1
R(X)= T T " T @
m n 2 2 2 m n 2 2 2 m n 2 9 2
2. 2. 0% > 2. 0% 2. 2. %%
i=1j=1 i=1j=1 i=1j=1
i=12,.m, j=12,..,n
The maximization problem (7) while satisfying (2) - non non
(4) is a complex problem of fractional nonlinear ZZd--x-- ZZd--x--
programming. An approximate solution to this problem i i
can be obtained as follows. R(X)=—"5 —> L =T(X).(8)
As m n 2 2 2 ZZO‘inij
1 2.2 00X | A
2 n i=1j=1

s8] (55| 5

i=1l j=1 i=1l j=1 i=1 j=1

then

At the same time, the task is reduced to finding a
plan X that satisfies restrictions and maximizes T(X).

To solve the problem, it is proposed to use the following
iterative procedure.
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A random plan x(©) is chosen that satisfies
constraints (2) - (4). If this plan does not maximize

T(X), then there must be some other plan x@ for
which

T(X(l))—T(X(O))>O. ©)

m n
Since ) > ojjXj >0 in any task plan, it follows
i=1 j=1
from (9) that

i=1j=1 i=1j=1
:ii(dij -T(x )a,J)x,J =33 a0 5 0
i=1j=1 i=1j=1

Now the task is to find a plan X(l) , that maximizes

s (x(l)) -3'3 aixY (10)
i-1j1

and satisfies constraints (2) - (4). An ordinary transport

linear programming problem is obtained. If the plan X(l)
calculated as a result of its solution does not maximize

T(X), then there must be a new plan X for which
T(X(Z))—T(X(l))>0.
The computational procedure is naturally to stop

m n
when the inequality > > xi(jk+1) —xi(jk) <g s

i=1j=1
completed, where ¢ is a small number.

A brief analysis of publications on the problem of
solving transport problems in conditions of uncertainty
allows us to draw the following conclusion.

In the problem of finding a transportation plan under
conditions of their random cost, there is no method for
obtaining an exact solution. The quality of the
approximate solution obtained using (8) and the rate of its

convergence cannot be estimated.

The purpose of the article is to develop
mathematical models and effective methods for solving
transport problems in conditions of uncertainty. To
achieve the goal, it is necessary to solve the following
tasks.

1. Development of effective (accurate and fast)
methods for solving transport problems with a
probabilistic description of the cost of transportation;

2. Development of a method for solving transport
problems for the case when the distribution density of the
random cost of transportation is not known.

Thus, the mathematical model of the transport
problem under uncertainty has a canonical representation
(1) - (5). The corresponding optimization problem is
formulated as follows: find a plan X that maximizes the
fractional — quadratic function (11) and satisfies
constraints (2) - (4).

Main result

Methods for solving transport problems in the
context of a probabilistic description of the cost of
transportation.

Any exact solution to problem (8), (2) - (4) can be
obtained by solving a recurrent sequence of nonlinear
programming problems as follows. It is clear that the

maximum R(X) is reached on the same set as the

maximum R? (X). In accordance with this, we introduce

[iiduXUJ
F(X)=RE(X)="2 2

m n

DIyt

i=1 j=1

11)

Thus, the problem is reduced to the following: to
find a plan X that maximizes the fractional-quadratic
function (11) and satisfies constraints (2) - (4). This
problem is proposed to be solved as follows.

Let's introduce columns E,X and a matrix G

dig X1
dio X2
E= dln © X = Xn :
dyy X91
dmn an
2
Gi1
Gh
0
G= Giy
2
Go1
0
2
Gmn
Then relation (11) takes the form
T AF T
X'C-C X X'CX ——T
L(X)= = C=CC . (12)

xTex  XTox'
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Now the problem is reduced to finding a set X that
maximizes (12) and satisfies

AX =B, (13)
where (13) is a matrix analogue (2) — (4).
X>0. (14)

The solution to this problem is achieved by
implementing an iterative procedure similar to that
described above. An arbitrary vector X @ s chosen that
is a solution to the system of equations AX =B and
satisfies the constraint X >0. If this vector is not a
solution to the problem, that is, does not maximize (12),

then there must be some other vector X ® for which

LXD)-L(x@)>o0. (15)
Since X' DX >0 , it follows from (15) that
(L(X (1)) —L(X (0))))( OTex® —
(16)

=XOTex @ _xOTex DL (x @y > 0.

Taking into account (16), the problem is reduced to
finding a vector x® satisfying (13) - (14) and
maximizing

R(X®)=xOTc-L(xM)G)x®,

Thus, the original problem is reduced to an iterative
procedure for finding a sequence of vectors satisfying (13)
- (14)

X*(l), X*(Z),..., X*(k),x*(kﬂ) ,

for which recurrence ratio is performed

= max [ X (BTex kb x Gt gy (b (1) |
¥ (kD)

(17)

= max X ® DT c_oLx*Myx kD -
(k1)

It is natural to stop the computational procedure

[x ) _x 9)

when the inequality ‘ <¢& is completed

Hx(kﬂ) —X(k)H<8, where & is some fairly small

number. This ensures the required accuracy of solving the
problem.

Each of the sequence of problems (17) is easier than
the original problem, since here the maximization of the
fractional-quadratic functional (12) is replaced by the

optimization of the usual quadratic functional (17). In this
case, at each iteration, it is necessary to solve problems of
the form: find a vector X that maximizes

f(x)=XTGX (18)

And satisfies
AX =B, (19)
X >0, (20)

Lagrange function is generated:
F(X,A)=f(x)-AT (AX —=B) = XTGX —AT (AX —B). (21)
As it is known, if X* s the optimal solution of the

problem (18) - (21), then there must be a vector A" such
that X* and A* satisfy the relations

A axTe-ATA<0, (22)
dX  [x=x
A=A"
AFX LA ) g, (23)
dX
GFOCA) e _Bax =0. (24)
dA
Transposing (22), we get
26X - ATA <0 (25)
or
ATA-2GX*>0.
Enter vector V* = ATA—2GX* > 0.
Then, taking into account (25),
26X* - ATA+V* =0, (26)
Further, we write (23) as follows
VT X* =0
or
(X*Tv*=0. (27)

Thus, if X is a solution to the problem, then there
are V* >0 and A" such that relations (24), (26), (27) are

satisfied. On the other hand, if there exist X >0, V" >0,
A which satisfy the conditions

AX =B, 2GX —ATA+V =0, XTv =0, (28)

then the vector X is the optimal solution to the problem
(18) - (20).

A significant drawback of this technique is the slow
convergence of the procedure for finding a sequence of
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solutions X*(l), X*(Z),...,X*(k) in problem (15) - (17).
This noted feature is explained by the fact that at each
iteration of the procedure for sequential improvement of
the objective function (12), it is necessary to solve a
quadratic programming problem, which is difficult in
itself. In this case, only an approximate estimate of the
number of iterations required to obtain an admissible
solution in terms of accuracy is possible. In this regard,
let’s consider another method for solving the problem.

It is convenient to replace the problem of
maximizing function (11) by the equivalent problem of
minimizing the function

m n

> o0

i=1j=1

{iidii XijJ

i=1j=1

G(x)= (29)

To solve the fractional-quadratic programming
problem obtained in this form, we introduce a new

variable
1
Yo=1
2 2 i
i=1 j=1
whence

m n
yodeinij =1.

i=1 j=1

(30)

Let us formulate a new set of variables

i=1 j=1 i=1 =1

iznlo'u Yij — Zil [Z Yij — Yo@i

Further
do(y)
dy;;

1

yij =_2</7.1 +ﬂj+Vdij), i=1 2,...m

O'ij
Substituting (38) into (33) - (36), we have

m n dl-
222—12(1, + 41 +vdjj )

i=1 j=1 £0jj

i 1

220 (ﬂ, +yj+vdu) Yod,i=1 2,..,m

m
1
Z—Z(/ll +/,IJ +VdU) yob] ,J—l 2,.

i-1 207;

2
=20y} Yij — 4 —pj—vdij =0,

yij = yoxij , =1 2,..,m, j=1 2,...,n (31)
In this case, relations (2) - (4), (29), (30) take the
form
1 2 y., G 2.2
ZZZ% 2 =220, (32
Yo i=lj=1 Yo i=lj=l
m n
D> dijyij =1, (33)
i=1 j=1
ZXU Zy” a,i=1 2,
0j=1
m 1 m
inj :_Zyij =b] , j=1, 2,..,n-1, (34)
i=1 Yo iz
whence
n
zy” =Yo4 , i=1 2,...m (35)
j=1
m
zy” = yObj y j=1, 2,..,n=1. (36)
i=1

Now the original problem has been reduced to the
form: find a set Y =(yij), i=1 2,.m, j=1, 2,..,n

minimizing (32) and satisfying constraints (33) - (36).
Let's solve the resulting quadratic programming problem.

Let’s introduce the Lagrange function
m n
Zﬂ, Zyu Yobj || DD dijyij -1 (37)
j=1 i=1 i=1j=1
i=1 2,..,m, j=1 2,..,n,
i=1 2,..,n (38)

Solving the resulting system of linear algebraic
equations, we obtain expressions for {4}, {,uj}, v

through yo and the initial data {a}, {bj}. Substituting
these expressions in (38), we obtain the relations for y;j;
through yp. Now we find the value y, from (32).
Finally, we calculate the values of the initial variables X;;

using (31). Problem is solved.

The fundamental advantage of the proposed method
for solving a transport problem in conditions of
uncertainty is the ability to obtain an accurate and fast
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result due to a single solution of the fractional — quadratic
programming problem.

The real complication of the problem arises if the
statistical data for an adequate reconstruction of the
distribution density of the random costs of transportation
is not enough, but a correct statistical estimate of the
mathematical expectations and variances of these random
variables is possible. Let’s consider a method for solving
the original problem under these conditions. Let m;; and

aﬁ — statistical estimates of the mathematical expectation

and variance of the random cost of transporting a unit of a
product from the i -th supplier to the i -th consumer. To
solve the problem, the following two-stage procedure is
proposed.

At the first stage, we will find a transportation plan
X that minimizes the average total cost of transportation

(39)

'V'[L(X)]:iimijxij

i=1j=1
and satisfying constraints (2) - (4). This is a common

transportation problem and let X (©) be the solutions.

At the second stage, we will set the task of finding a
plan that minimizes the compromise criterion made up of
four terms. The first term determines the variance of the
total cost of transportation, the second — a measure of

deviation of the desired plan from the plan x (0 , the third
term provides a solution satisfying (2), the fourth —
satisfying (3). Thus, the composite criterion has the form

mn22mn (0)2m m n-1 m
L(X)ZZZO'U'XU'-FZZ(X”—X” ) +Zﬂ1 inj—ai +Z/JJ inj _bJ . (40)
i=1 j=1 i=1 j=1 i=1 j=1 j=1 i=1
Further
dL(x
%:2(7"2&]‘ +2(Xij —Xi(jo))-i-ﬂi +/.lj =0,i=1 2,...m, j=1 2,.,n-1.
1)
Hence
0
X,__zxi(j)—ﬂi—ﬂj . _
'J_f’ i=1 2,.m, j=1 2,..,n-1. (41)
Z(O'ij +1)

Substituting (41) into (2) - (3), we obtain the system
of equations

o 2Xi(jO) — i —

=q;,i=1 2,...m,
j=1 2(0‘5+1)

0
m 2x\%) — 2 + )

3 —bj,j:l, 2,...,n-1.
i=1 2(0'” +l)

The solution to this system of linear algebraic
equations defines the sets {4}, i=1, 2,..,m, {yj},

j=1, 2,..,n—1. Substitution of these sets in (41) gives
the desired solution to the problem.

We now make an important remark. The results of
solving the original problem naturally depend on the
nature of the distribution density of the random variables

Cj, i=12..,m, j=12,..,n. The set (xij) obtained
in problem (39), (40), (2), (3) corresponds to the
hypothesis that this distribution is Gaussian with
parameters (mij, 0“2). The real distribution can be very
different from the Gaussian one. Therefore, it is advisable
to consider the solution of this problem under the

assumption of the worst distribution density of the random
cost of transportation, having previously found this worst

distribution. The problem of finding the worst distribution
is solved under the condition that, based on the results of
statistical processing of the available data for each

"supplier — consumer" pair (i,j), estimates of the

mathematical  expectation and variance of the
corresponding random value cj; are obtained. Let us

assume that the worst density corresponds to the
maximum probability that a random value of the cost ¢j;

will exceed a given acceptable threshold c¢,. Thus, this
problem can be formulated as follows: find the
distribution density of the random value f(cij) that

maximizes
p(Cij >Cn)= j f (Cij)dcij (42)
Cn
and satisfies the accepted constraints
I f (Cij )dcij =1, (43)
J. Cij f (C)dC = mij ) (44)
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Iczf(c)dc:oﬁ+mﬁ.

—00

(45)

The resulting problem is a special case of the
continuous linear programming problem, the general
methods of solving which are presented in [15]. It is
shown that the solution to problem (42) - (45) must be
sought in the form of a linear combination ¢ of the Dirac
functions. The solution procedure is iterative and consists

in the sequential calculation of the components
(X1s X9, Xm )+ (61, 62,...,6y ) , the basic plan — function

m

> x5(0-6;).

=1

(46)

The plan-function defined on each iteration is
checked for optimality. If the sign of optimality
formulated in [15] is not fulfilled, then another step is
taken to improve the solution. This procedure will result
in a function for task (42) - (45)

T 2, 52 2

Ch—M “ —mi

£(6)= ( n u) . 9_m,1+c7 Mij Cn o _5(0-c,), )
O'2+(Cn—mij> Cn_mij O'2+(Cn—mij)

moreover, the probability of getting into critical area Conclusions

Cc > c, is equal to coefficient at second term in expression

(47). Thus 1. Considered the problem of forming a

2
P(c>Cy)=—— (48)
o +(Cn - mij )

Now, using (48), an additive criterion of
efficiency (expediency) of a transportation plan X can be
formed, taking into account the worst
conditions  for its implementation, which has
the form

m n O'i?
L(x)=22> 5 Xij - (49)
i=1j=1 O-i? +(Cn —mj )

The directions of further research are associated with
the development of methods for solving the considered
problems for cases that are deeper than the theoretical and
probabilistic uncertainty of the initial data. This
uncertainty in the context of small samples of
observations can be described in terms of fuzzy [16 - 18]
or imprecise [19 - 20] mathematics. Possible solutions in
this case can be obtained using the methods proposed in
[21].
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METO/I BUPIIIEHHA KAHOHIYHOI 3AJJAYI TPAHCIIOPTHOI JIOTICTUKH B
YMOBAX HEBU3HAYEHOCTI

IIpeameT. Po3risiHyTO KaHOHIUHY 3a/ady TPAHCIIOPTHOI JIOTICTUKH Y PO3TayXeHid cucteMi "mocradaiabHUKH — crioxkwuBadi”. Hiab.
Po3pobka TouHOrO anropuTMy BHpIIIEHHS Li€i 3amadyi 3a IMOBIPHICHUM KPHTEpiEM B HPHUIIYIICHHI IPO BUIAJKOBUH XapakTep
BapTOCTEH TpaHCmopTyBaHb. 3agavi. 1. Po3poOka ToYHOro MeToqy BHpIIICHHS 3a/adi BiAIIyKaHHS IJIaHY, MIHIMI3yI04OTO CyMapHY
BapTICTh TPAHCIOPTYBaHb B YMOBAaX, KOJH IX BapTOCTI 3a/laHi BIACHOIO LIUIBHICTIO po3mofiny. 2. Po3poOka mMeTony BUpIIIEHHS
3aa4i, KOJM LIUJIBHOCTI PO3IOALTY BapTOCTI MepeBe3eHb HEeBiOMi. MeToaM. 3aIpONOHOBAHO OOUMCIIOBAIBHY CXEMY BUPILIEHHS
3ajadi, sIKa peanizyeThesl ITepalifHoI0 IPOIEeAyPOIO MOCIIIOBHOTO ITOKpAIIeHHs IUIaHy TPAHCIIOPTYBaHb. 30KHICT Li€l mponexypu
JIOBEJICHO. 3 IJUII0 IMPHCKOPEHHS 301KHOCTI 00YMCIIOBAIFHOT HPOIEIYPH A0 TOYHOTO PIIISHHs 3alPOIIOHOBAHO aJlbTepPHATHBHHI
METOJ], 3aCHOBAaHMH Ha pillleHHI HETPUBHAIBHOI 3amadi JPOOHO-HENIHIHHOTO NporpamMyBaHHA. MeToJ 3BOIAWTH BHXITHY CKJIAJHY
3ajady 10 pillleHHs MOCIIiIOBHOCTI O1IBII MPOCTHX 3aad. BuxinHa 3amada JOMOBHEHA PO3IIISIOM BaXIIMBOI JUIS IPAKTHKH CUTYAIIii,
KOJI B yMOBaX Majol BHOIPKH MOXITHUX JAQHUX BIJACYTHS MOXKIMBICTh OTPHMaHHS aIeKBaTHUX aHATITHYHUX OIHCIB JUIS IUIBHOCTEH
PO3TOALTEeHHs BUMIAAKOBHX BaAPTOCTEH TPaHCTIOPTYBaHb. [l pillieHHs 3a/1a4i B TAKOMY BHIIAJIKY 3aIPONOHOBAHO MiHIMAKCHHN METOL
BiJIIyKaHHS HAHKpaIIOro IUIaHy TPAHCIOPTYBaHb Y HAWOUIbII HECHPUATIMBIA CHTyalii, KOJIHM MIUIBHOCTI PO3MOALTY BHIIAAKOBOI
BapTOCTI TPAHCIIOPTYBaHb OyAyTh HaWripmmMu. /s BigIIyKaHHS TaKUX OIUIBHOCTEH BUKOPHCTAHO CY4aCHHN MaTeMaTUYHUH amapat
KOHTUHYQJIFHOTO JIHIHHOTO mporpaMyBaHHs. Pe3yabTaTH. 3amporoHOBaHI MaTeMaTHYHa MOJENb Ta METOJ DIlICHHS 3amadi
TPaHCIOPTHOI JIOTICTHKY B YMOBaX HEBH3HAUCHOCTI MOXiTHMX AaHuX. lllykaHWH I1aH JOCSATAEThCS 3 BUKOPHCTAHHSAM PIIICHHS
3amadi IpoOHO-HeNiHiiHOTO nporpamyBaHHs. BucHoBkH: Po3risiHyTo 3amauy GopMyBaHHS IUIaHy TPaHCIOPTYBAHb 32 YMOBH, IO 1X
BapTOCTI — BUIAIKOBI BENMYMHHU. TakoXk PO3MISIHYTO METOJ BUPIIICHHS 3a/adi ONTHUMI3alil TPaHCTIOPTYBAHb VISl BUIAAKY, Y SKOMY
IITBHICTH PO3NOAITIEHHS BUIIAKOBOI BAPTOCTI HE MOXKEe OYTH KOpPEKTHA BU3HAUCHA.

KurouoBi cjioBa: TpaHCTIOpTHA 3a7ada JIHIKHOTO MPOTrpaMyBaHHS; BUIIAJKOBa BapTiCTh TPAaHCIOPTYBaHb; ApOoOHO—HENiHiHA
ONTHMI3aisl.

METO/I PEIIEHAA KAHOHUYECKOM 3AJJAYU TPAHCIIOPTHOM
JIOTUCTHUKHU B YCJIOBUAX HEOIIPEAEJIEHHOCTH

[peamer. PaccMoTpeHa KaHOHMYECKas 3aJada TPAHCIOPTHOH JIOTUCTUKM B paclpelelicHHOW cucTeMe "MOCTaBIIMKH —
notpeburemn”. Lleanb. PazpaboTka TOYHOTO anropuTMa perieHus 3TOH 3aJady M0 BEPOSTHOCTHOMY KPUTEPHUIO B MPEATOJIOKCHUN O
ClTydaifHOM XapakTepe CTOMMOCTEH TpaHCOpPTUPOBOK. 3agaun. 1. Pa3paboTka TOYHOTO METO/a PEIICHUS 3a]]a4l OTHICKAHHUS IJ1aHa,
MHHUMHU3UPYIOIIET0 CyMMapHYI0 CTOMMOCTh TPAaHCIOPTHPOBOK B YCIOBHSX, KOTIJd MX CTOMMOCTH 33/IaHBI CBOMMH IUIOTHOCTSIMH
pacnpenenerus. 2. PazpaboTka MeToza pelleHus 3a/laud, KOTJa IUIOTHOCTH PaclpenesieHHs CTOMMOCTH NEPEBO30K HE H3BECTHBI.
Metoasnl. IlpennokeHa BBIYMCIUTENBHAS CXeMa pelIeHWs 3aJadd, KOTopas pealnn3yeTcs HTEepalMoOHHON Mporeaypoi
MOCJIe/IOBAaTEIFHOTO yIydIICHHS IUIAHAa TPAHCIOPTUPOBOK. CXOAMMOCTH 3TOW Tpomemypsl AokazaHa. C IENBI0  YCKOPEHHS
CXOJMMOCTH BBIUHCIUTEIBHON MPOIEAypsl K TOYHOMY PEIICHHIO MPEIIOKEH albTepPHATUBHBIA METOJ, OCHOBAHHBIA HAa PEIICHUH
HETPUBHANBHOM 3alaull APOOHO-HENMHEHHOro NpOrpaMMHUPOBaHUSA. METOX CBOJAWT HCXOAHYIO CIOXKHYIO 33Jady K PEHICHHIO
TOCIIeIOBaTeIFHOCTH O0JIee MPOCTHIX 3a1ad. McxomHas 3aada JOMOTHEHA PACCMOTPEHHUEM BAXKHOM JUIS MPAKTUKH CHTYalllH, KOTa
B YCJIOBHSX MaJOH BBIOOPKH MCXOIHBIX JJAHHBIX OTCYTCTBYET BO3MOXKHOCTBH MOJIyYEeHUs aJCKBAaTHBIX aHAJUTUUECKUX OIMCAHUH JUIs
IUIOTHOCTEH pacrpeleneHnss CIydalHbIX CTOMMOCTEH TpPaHCHOPTHPOBOK. Jlmsi pelleHust 3ajadd B ITOM cCilydae HpEIOKEH
MHHUMAaKCHBIA METOJ OTHICKaHHsI HAMJIYYIIEro IUlaHa TPAHCIIOPTUPOBOK B Hanbosee HEONaronpusITHONH CHTyalllH, KOra IIIOTHOCTH
pacnpeneneHus Ciry4aliHOH CTOMMOCTH TPaHCIIOPTHPOBOK SIBISAIOTCS HAUXYAIIUMH. JIJIsl OTBICKAHUS TaKUX IFIOTHOCTEH MCIIOJIb30BaH
COBPEMEHHBI MaTeMaTW4YeCKMi ammapaT KOHTHHYaJbHOTO JMHEWHOro mnporpaMMmupoBanusi. Pesyabtatel. [IpenioxeHs
MaTeMaTHIecKass MOAENb W METOA PEIICHHUS 3a4a4d TPAHCIIOPTHOH JIOTUCTUKH B YCIOBHAX HEONPEIETCHHOCTH UCXOAHBIX JAaHHBIX.
VckoMBbIf TIaH JOCTHTaeTcsl € WCHONB30BAaHMEM pEIICHUS 3adadd  JApoOHO-HEMTHMHEHHOTro IporpaMMHpOBaHus. BbIBOABI:
PaccmoTpena 3amada (OpMHUPOBAaHUS IUIaHA TPAHCIIOPTUPOBOK IPH YCIOBHH, YTO MX CTOMMOCTH - CIIydJaiHBIE BEIMYHHBI. Takxke
paccMOTpeH METO]] pPelIeHHs 3aJa9l ONTUMH3AIMN TPAHCIOPTHPOBOK JUIS CUTYAIllH, KOTAA IJIOTHOCTH PacIpeeNIeHus! CITydaiHOH
CTOMMOCTH HE MOJET OBITh KOPPEKTHO OIpE/IeNicHA.

KiioueBble cj10Ba: TpaHCIOPTHAS 3aa4a JIMHEHHOTO NPOrpaMMHPOBAHHUS; CIIy4aifHasi CTOMMOCTb TPAHCIIOPTHPOBOK; APOOHO—
HEJIMHCHHAS OIITUMM3ALUA.
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