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DEVELOPMENT OF A MODEL FOR THE DYNAMICS OF PROBABILITIES OF
STATES OF SEMI-MARKOV SYSTEMS

The subject is the study of the dynamics of probability distribution of the states of the semi-Markov system during the transition
process before establishing a stationary distribution. The goal is to develop a technology for finding analytical relationships that
describe the dynamics of the probabilities of states of a semi-Markov system. The task is to develop a mathematical model that
adequately describes the dynamics of the probabilities of the states of the system. The initial data for solving the problem is a matrix
of conditional distribution laws of the random duration of the system's stay in each of its possible states before the transition to some
other state. Method. The traditional method for analyzing semi-Markov systems is limited to obtaining a stationary distribution of the
probabilities of its states, which does not solve the problem. A well-known approach to solving this problem is based on the formation
and solution of a system of integral equations. However, in the general case, for arbitrary laws of distribution of the durations of the
stay of the system in its possible states, this approach is not realizable. The desired result can only be obtained numerically, which
does not satisfy the needs of practice. To obtain the required analytical relationships, the Erlang approximation of the original
distribution laws is used. This technique significantly increases the adequacy of the resulting mathematical models of the functioning
of the system, since it allows one to move away from overly obligatory exponential descriptions of the original distribution laws. The
formal basis of the proposed method for constructing a model of the dynamics of state probabilities is the Kolmogorov system of
differential equations for the desired probabilities. The solution of the system of equations is achieved using the Laplace transform,
which is easily performed for Erlang distributions of arbitrary order. Results. Analytical relations are obtained that specify the desired
distribution of the probabilities of the states of the system at any moment of time. The method is based on the approximation of the
distribution laws for the durations of the stay of the system in each of its possible states by Erlang distributions of the proper order. A
fundamental motivating factor for choosing distributions of this type for approximation is the ease of their use to obtain adequate
models of the functioning of probabilistic systems. Conclusions. A solution is given to the problem of analyzing a semi-Markov
system for a specific particular case, when the initial distribution laws for the duration of its sojourn in possible states are
approximated by second-order Erlang distributions. Analytical relations are obtained for calculating the probability distribution at any
time.

Keywords: Semi-Markov system; model of dynamics of probabilities of states; approximating Erlang distributions; analytical
calculation of probabilities of states.

Introduction demanding of them in terms of the amount of information
used is as follows. Sets of possible states E and transitions
Traditional technologies for constructing models of ~ between them, as well as the matrix (Q;(t)) of

the functioning of complex systems are based on the use  jndependent distribution functions of the time spent by the
of Markov theory. The corresponding models  process in state | before the transition to state j, i€E, j€E,
constructively use the Markov property of the behavior of 16 given. Moreover, if tij is the random duration of stay

such systems [1]. The simplicity and efficiency of such i, i hefore the transition to j, 50 Q. (t)=P(t <t). Then
models are a natural consequence of the fact that in ! !

Markov systems the distribution density of the duration of
the stay of the system in any particular state is determined
only by this state, but does not depend on when and how
the analyzed system got into this state. This circumstance

the probability of transition Pij(t) from | to j is the
probability that no transition to any other state occurs
during this time. This probability is equal to

t
makes it possible, using simple Kolmogorov differential P;(t) =IH(1—Qik (o)dQ; () =P(£ () =,
equations [2, 3], to solve the problem of finding the 0 k#j @)
distribution of the probabilities of the stay of t, <t/£(0)=i),i=|.
the system on the set of possible states with an analytical
description of the dynamics of this distribution. Failure to The set of functions B;(t) together with the initial

fulfill the Markov property leads to a significant state also uniquely define a semi-Markov process. The

complication of the problem of analyzing the behavior of probability P, () of transition from i to j in an unlimited
systems. Difficulties in solving the corresponding

problems make the problem of developing special time is
methods for constructing behavior models of semi- o
Markov systems relevant. R, =Py() = [TT@-Q (2))dQ; () )

0 k#j

Literature analysis

and determines the probability of transition of the Markov
chain embedded in the process. Wherein Y P, =1.
j#i
Next, a conditional distribution function of the
duration of stay in | before the transition to j is introduced,
which is equal to

The semi-Markov process, as it is known [4, 5],
differs from the Markov process in that the distribution
law of the random duration of stay in each of the possible
states is not exponential. There are several alternative
ways to define a semi-Markov process [6]. The least
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R, () = P(t, <t/<(0) =i, £(©) = ). 3)
Then
Pij t= Fij 0] F)IJ 4)

The matrix of transition probabilities of the
embedded Markov chain P=(P,) together with the matrix

of conditional distribution functions F(t)=(F;(t)) and the

initial state determine the third way of specifying the
Markov process [6].

The fourth way of setting this process is
implemented as follows [7]. The unconditional
distribution function of the duration of stay in i before
leaving to some other state is determined

F=Pt <=2 RREO=2RO. ()

j#i j#i

The same function can be defined through the
original matrix (Qij(t)):

Fij ®) :1_H(1_Qij ®)). (6)

j#i

The expression corresponding to (5) for the
distribution density of the duration of stay in i before
leaving has the form

fi (t) = z pij

j#i

dr (t)
T - Z pij fij (t) (7)

j#i

Next, the matrix of conditional transition

probabilities is introduced
qij(t) =P(4(t)= j/tij =t,4(0) =1).

Herewith
Py ®=P(SM)=]j /tij =1,£(0)=i)= quj ()i (r)dz.

All of the above methods for specifying a semi-
Markov process are equivalent.

In the works on the analysis of semi-Markov
systems, the results of solving the following two
important problems are used. The first task is to calculate
the average durations of the stay of the system
in each of their states, which is solved using the standard
ratio

T =

ot—38

th(dt=> Pt Odt=YR7. (7
j#i 0 j#i

The second task is to obtain the final distribution of

the probabilities of the system states, which is solved as

follows. First, using the transition probability matrix

P=(R;), the stationary distribution of state probabilities

for the Markov chain embedded in the semi-Markov

process is found. The vector z=(m1, m,..., m) of these
probabilities is found by solving the system of equations

=P,

iﬂ'i =1. ®

Now, as shown in [6, 7], the desired final distribution
of state probabilities is determined by the relations

p: ﬂ.iz_-i

I n

,i=12,..,n 9)
T
i=1

The obtained results (7) and (9) are very useful in
solving practical problems. However, in many cases, for
example, when solving control problems for semi-Markov
systems, it is necessary to have an analytical description
of the dynamics of state probabilities. In addition, it is
important to know the dependences of the values of the
components of the probability distribution of the system
states on the numerical values of the system parameters.

In this regard, the purpose of the study is to develop
a technology for finding the dynamics of the probability
distribution of the states of a semi-Markov system.

Main result. Calculation of the probability
distribution of the states of a semi-Markov system.
Consider a system with its possible states and build a
model of the functioning of such systems.

Let us introduce, using (3), F;(t)=P(z; <t) — the

probability that the random duration tij of the stay of the
system at i before the transition to state j will be less than
t. Then the probability of no transition to state j on the
interval [t, t+ 7] is defined as follows:

Q,(t+7)=Q,()Q; . t+7);
Q,t+7)
Q)

In this case, the probability of transition from i to j
on this interval will be equal to

Qi t+7)= (10)

Qij (t+7)
W, (t, t+7)=1-Q,(t, t+7) =1 0,0 =
_ Qij ® _Qij (t+7) _ - Qij (t+7)-(1- Qij ®) — (11)
Q; (1) Q; (1)
Fij (t+7)- Fij )
) 1- Fij (t) .

Let the distribution law of the duration of stay at i
before going to j be the Erlang distribution law of order m.
Wherein [8]

"

m!

Fi)=1-Y i
m=0
If m=2, so

Fy(®) =1- L+ At ™ (12)

Now, substituting (12) into (11), we obtain the
probability of transition from i to j on the interval [z, 7+7].
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[L- 1+ t+o)e T -[1- L+ 4, e ] _

W, (t, t+7) = —
: 1-@+ 2, e ™

" (13)
(A0 -+ A teo)e b 1_1+/1Ij (t+7) o i

1+, T LAt

Then the distribution density of the duration of stay
at i before the transition to j on the interval [z, #+7] has the
form:

/1|j2 (t+7) efaijr '
1+ At

]

f(t,7) = (14)

It is clear that at t = O relation (13) is reduced to
formula (12), which determines the Erlang distribution
law of order 2 for an interval of length t, and relation (14)
takes the form

f(t)=27e ", (15)
usual for the second-order Erlang distribution density. It
follows from relation (14) that the distribution density of
the random duration of stay in state i before transition to j
on the interval [z, ¢+ + 7] depends on the value of the
parameter z. This value can be random. Consider, for
example, a two-channel queuing system with an incoming
flow of claims, in which the distribution density of the
interval between claims is described, for example, by the
second-order Erlang law (15). A request received at the
moment when both channels are free takes one of them and
begins to be served. Let the next request arrive at a random
time interval. If the servicing of the previous customer by
the first channel has not been completed by this moment T,
then the next customer occupies the free second channel.
Let the distribution laws of the random value of the
interval between incoming customers and the duration of
service of each of the channels have the form, respectively

[9
F(r)=1-(1+Ar)e ™,

(16)
G(r)=1- QA+ ur)e ™.

Then the probability of completion of servicing by
the first channel on the interval [T, T + 7] in accordance
with (13) is

BT Tar)=1- A0 4D e (17)
1+uT
The corresponding distribution density is described
by the formula

2
£, Tr) = D) e (18)
1+ ut
In addition, in accordance with (16), the distribution
law for the duration of servicing a customer by the second

channel is determined by the relation
G,(r) =1- 1+ ur)e™, (19)

and the distribution density of this duration is

f,(z) = yre ™. (20)

The random moment of the end of servicing by any
of the two busy channels is specified by the minimum of
the durations of servicing claims by these channels. The
corresponding distribution density is determined by the
densities f,(T,T+71) and f2(z2) as follows. Let

xI = T + ¢/ and x2 = 72 determine the service duration
values for the first and second channels. We introduce
u = min{x1, x2}. The distribution function of this random
variable u has the form

G(u) =1-(1-G,(u)A-G,(u)), (21)
The corresponding distribution density, found by
differentiating (21) with respect to u, is equal to

g(u) = f,(W)A-G, () + f,(W)A-G,(u)).

Let us substitute functions (17) - (20) into (22),
bearing in mind that at the time of service by any of the
channels 71=7,=r. In this case, the random variable u takes
on the value T+ if the first channel completed servicing
earlier than the second, and corresponds to the value of ©
if the second channel finished servicing earlier than the
first. That's why

(22)

2
g(T,T) — :u (T + T) e—yr(1+ ﬂr)e—yr + luzz_e—m 1+AU(T + T) e—m —

1+uT 1+uT

2

_ H —2ur —2ur _
Lot [(T+o)+pr)e™ + oL+ p(T +7) o™ =

2

= [T o) pr) ol (T 7)) =
1+ uT

= ’le
1+uT

2

__H
1+ uT

(T+Tur+r+uc’ +o+uc’ +ulr)e™ = (23)

(c+ T +0)+2uTc+2ur?))e™ =

2
= H (et (T o)+ 2ur(T +2)e™ =
1+ uT

2

= H (T )+ 2ur))e .
1+uT

It follows from this relation that the analytical
description of the distribution density of the duration of
the stay of the system in the state when both channels are
occupied until the moment one of them is released
contains a random parameter T. The fundamental
complexity of the situation arising in this case is as
follows. Relation (23) describes not a single density, as it
happens when all the parameters of the distribution
density are known constants. The random nature of the
parameter T gives rise to a family of densities, each of
which corresponds to a specific value of this parameter. It
is clear that in this situation a direct solution to the
problem of analyzing such a system is impracticable. An
approximate solution can be obtained if the parameter T is
set by its mean value T . In this case, relation (23) takes
the form

2

= M
g(Tvz-)_1+lu.r

(r+(T +7)1+2ur))e™.  (24)
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This relationship makes it possible, using
numerical integration, to calculate the average value of the
duration of the system's stay in the busy state
of both channels, and from this to obtain an estimate of
the intensity 4 of the system's exit from

this state.
The above distributions and calculations (23) - (24)
allow us to analyze the process of functioning of the

considered two-channel queuing system. Let us
introduce a set {Ei}, i = 0,1,2, of system states
corresponding to  the number of  occupied

channels. We find the distribution of the probabilities
of the states of the system Pk(t), k=0,1,2, by
solving the Kolmogorov system of differential equations
[10]

dP t
() Zﬂ«,k P)-R® D 4, k=012 (25)
JEZ ]eZk
where, 4, - intensity of system transition from state j to

state k; Zc* — the set of system states, from which a direct
transition to the k-th state is possible; Zi — the set of states
of the system into which a direct transition from the k-th
state is possible.

We solve the resulting system of equations using the
Laplace transform. As is known, the Laplace transform of
the function u(t) is the function

L(u(t)) = F(s) = Tu(t)e’s‘dt. (26)

The Laplace transform of the derivative u'(t) of the
function u(t) is defined by the relation

L(u'(t)) = Tu (e ™dt. 27)
Integrating (27) by parts, we obtain
L(u'(t)) = _Te‘s‘u (t)dt =

=u(t)e™ |7 +sTu(t)e’s‘dt =sL(u(t)) —u(0).

Transforming (25) according to Laplace, we obtain

s (s)-R.(0) = Z ﬂ*jk”j (S)_Pk(s)z Ao (28)
jEZ; jEZI:
where 7, (s) = L(P,(t)).
In the considered task we have Zg*=1; Zo=1;

Z:7={0;2}; Z2:={0;2}; Z;*=1; Zy=1; Po(0)=1; P1(0)=
P2(0)=0. Therefore, the system of equations (28) is
simplified to the form

ST, (5) = 1*107[1 (5) - /1017[0 (5) +1=0,

S7,(8) = A7, (S) + A5y 7, (S) — (A4 + A1) 7, (S),

ST, (S) = /112”1(5) -4

170> (S)

After reducing similar terms, we get:

(S+ 01 )76 (S) — Ao, (S) =1,
An 74 (8) = (S+ Ay + A,) 7, (S) + 45,7, (5) =0,
A, (8) = (S + 4, )7, (5) = 0.

The system of linear algebraic equations (29) is
solved in a standard way. By Cramer's rule, we have:

bi(s)
D(s)’

(29)

,1=0,12,

z(s) = (30)

where

(s+4) o 0
D =det Ay —(5+ 4, +4,) A )
0 A (s+4,)

1 - 0
D,=det| 0 —(S+A4,+4,) Ay ,
O 112 (S + 121)

(s+4,) 1 0
D, =det| A 0 A

01 21 1

0 0 (5+4y,)

(S+/101) _/110 1
D, = det An _(S+ﬂ10+ﬂ12) 01,
0 A 0
Note that when solving the resulting system of
equations, it is necessary to take into account the

normalization condition Po(t)+P1(t)+P(t)=1, which after
the Laplace transform has the form

2

> 7(s) =% or siﬂk (s)=1.

k=0

As a result of performing the necessary operations in
accordance with (30), we obtain

T (S) — Abo + Ahls+ AJZSZ (31)
° B, +Bs+B,s’+B,s*’
m,(s) = Aot AsS : (32)
B, +B;s+B,s+B;s
1y () = e (39)

B, +Bs+B,s+Bs’

We carry out the inverse Laplace transform by
expanding the fractional rational functions (31) - (33) into
elementary fractions. To do this, it is necessary to find the
roots of the polynomial in the denominator of the
functions being expanded by solving the equation

B, +B,s+B,s*+B,s’=0.

Let these roots be equal S1, S, Ss.

The technology of further operations depends on the
nature of these roots. In this case, in the general case, the
following options are possible.
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a) All roots are real, different. Then

Ap tASTAS | 8 tanS+ayst
B, +Bs+B,s’+B,;s’ (s—5)(s-5,)(S—S,)

(34)
A, =D i-01,2.3

S—5, B,

The unknown coefficients «,, «,, a, are found

after reducing (34) to a common denominator and
equating the coefficients at the same powers of s to the left
and right of the equal sign.

b) Roots are real, multiples. Then

2
Ao T3S + 3,8 _ oy A, i3
k1 k2 kK3 + 2 + 3 +
(5_51) (S_Sz) (S_Ss) S—§; (5_31) (5_51)
a a. a
21 + 22 - + 23 -~ + (35)
S-S, (S_Sz) (S_Sz)

Oy Oy Oy

+ + -+ 5
535 (S_Ss) (5_53)

In this case, the total number of terms in relation (35)
cannot exceed three. The method for finding the unknown
coefficients in (35) is the same as above.

¢) Among the roots there are complex. Then

B tanS+3pS" & fs+y
(s—s)(s*—ps+q) s-s, s*—ps+q

Unknown coefficients are found in the same
way as before. Further, according to the correspondence

o

table of the originals and their  Laplace
transforms, unknown functions Po(t), Pi(t), P2(t), are
found, which specify the desired
distribution of the probabilities of the

system states.
The task becomes much more complicated if the
number of channels in the system is more than two. In this
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PO3POBKA MOJIEJII JMHAMIKHA IMOBIPHOCTEM CTAHIB
HAIIIBMAPKOBCBKUX CUCTEM

Ipeamer — AOCHIKEHHS AMHAMIKH PO3MOJIITY WMOBIPHOCTEH CTaHIB HAMiBMapKOBCHKHX CHCTEMH IMPOTATOM MEPEXiTHOTO
Mpoliecy 10 BCTAHOBJCHHS CTalliOHAPHOTO po3mojiny. MeTa — po3poOKa TEXHOJOTil BiJIIYKaHHS aHANTITUYHUX
CHIBBiHONIEHb, IO ONHCYIOTh IWHAMIKYy MMOBIpHOCTEH CTaHIB HAaIliBMapKOBCHKHX CHCTEMH. 3aBAaHHA pO3poOKa
MaTeMaTHYHOI MOJIeNi, aAeKBAaTHO ONMCY€E JUHAMIKy HMOBIpHOCTEH CTaHIB cucTeMH. BuxinHi naHi Ui BUpILMIeHHS 3aBOaHHS -
MaTpHUI YMOBHHX 3aKOHIB PO3IIOJTY BHIIQAKOBOI TPHBAIOCTI MepeOyBaHHS CHCTEMH B KOKHOMY 3 MOIIMBHX ii CTaHIB 10
nepexofy B Oyab-sike iHme ctaH. Meroa. Tpanuniiinuil MeTon aHasi3y HalliBMapKOBCHKHUX CHCTEM OOMEXY€EThCS OTPUMAHHAM
CTaIliOHAPHOT'O PO3MOiIY HMOBIPHOCTEH 11 cTaHiB, 110 HE BUPIIy€e MOCTABICHY 3a1auy. BimoMuii mixi 10 BUPIIICHHS [IbOTO
3aBJaHHS 3aCHOBAaHMH Ha (OpMyBaHHI Ta BUPIIICHHI CUCTEMM iHTErpanbHHUX PiBHAHb. OJHAK B 3arajlbHOMY BHIAIKy AJII
JIOBITBHHUX 3aKOHIB PO3IOJIIY TPHBANOCTeil mepeOyBaHHS CHCTEMH B MOXIMBHX CBOIX CTaHaX Iel MiIXix HE peasizyemo.
[ykanuii pe3ynpTaT MOKe OyTH OTPUMAHHH TIIBKHM YHCENBHO, IO HE 3aJO0BOJbHSAE MOTpeOM HpakTWKU. st oTpUMaHHS
HEeOoOXITHUX aHANITHYHMX CIIiBBITHOIICHb BHKOPUCTOBYETHCS E€PIAHTOBCHKUI alpOKCHMAIis BHXITHHX 3aKOHIB PO3IOMLNY.
Ileii mpuiioM iCTOTHO MiABHUIIYE aJeKBATHICTh OJEP)KYBAaHUX NPH LIbOMY MAaTeMaTHYHUX MOAENeH (yHKIiOHyBaHHS CUCTEMH,
Tak K J03BOJISE BIMIATH BiJ HAJAMIPHO 3000B'SI3YIOTh €KCIIOHCHIIIMHUX OIMKCIB BHUXIJIHUX 3aKOHIB po3mominy. dopmasibHa
OCHOBA 3allPOIIOHOBAHOTO METOAY MOOYIOBH MOJEINi ANHAMIKM HMOBIPHOCTEH CTaHIB - cucTeMa AuGEpeHIiaIbHUX PiBHSIHD
KommMoropoBa momo IIykaHHX HMOBIpHOCTeH. PimleHHs CHCTeMH pIBHSHB JOCSTAETHCS 3 BHKOPHCTAHHSAM IIEPETBOPEHHS
Jlannaca, sike JErKo 3MIHCHUMO VISl €pJIaHTOBCHKHM PO3MOALUIIB A0BIIBHOrO MOpsaky. PesyabraTH. OTpHMaHO aHANITHYHI
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CIIBBIJIHOIICHHS, SIKI BU3HAYAIOTh LIYKAHHH PO3MOJII MMOBIPHOCTEH CTAaHIB CHCTEMH Ha OyIb-sKHi MOMEHT udacy. Meton
3aCHOBAHUN Ha alpOKCUMAL]l 3aKOHIB PO3MOJLLY TPUBaJIOCTEN NnepeOyBaHHSA CUCTEMH B KOKHOMY 3 MOXJIMBUX CBOIX CTaHIB
posnoxinamu Eprmanra HanexHOTo MopsanKy. I[IpHHINIIOBAM MOTHUBYIOUMM OOCTaBHHOIO ATl BHOOPY 3 METOIO alpoKCHMAIii
pO3MOIINB caMe HBOTO THIy € MHPOCTOTa IX BHKOPHCTaHHS IS OTPUMAaHHS aJeKBaTHUX Mojened (yHKIiOHyBaHHS
IMOBIpHICHUX cucTeM. BucHoBkM. HaBesneHo pillleHHS 3ajaui aHaji3y HaIiBMapKOBCBKUX CHUCTEMHU JUIi KOHKPETHOTO
OKPEMOTO BHWIIQJIKy, KOJU BUXIJHI 3aKOHH PO3IMOJIUTY TPUBAIOCTI ii mepeOyBaHHS B MOJMJIMBHUX CTaHaX alpOKCUMYKOTHCS
posnoainamu Epnanra apyroro nopsaky. OTpUMaHO aHaNITHYHI CHIBBIAHOIIEHHS JJISL PO3PaXyHKy po3Nojily HMoBipHOCTEH
Ha OyIb-sIKHif MOMEHT 4acy.

Kiro4oBi cjioBa: HamiBMapKOBCBKMX CUCTE€Ma; MOJENb JUHAMIKM HMOBIpHOCTEH CTaHiB; almpOKCUMYIOUMH pO3MOILIL
Epnanra; aHanmiTHYHUN pO3paXxyHOK HMOBIPHOCTEH CTaHiB.

PA3PABOTKA MOJEJN JTUHAMUKHA BEPOSITHOCTEN COCTOSIHUM
INOJTYMAPKOBCKUX CUCTEM

IIpenmer — uccrienoBaHUE IAMHAMUKHU PacIpeieieHUs BEPOSTHOCTEH COCTOSHUN MOIyMapKOBCKOM CHUCTEMbl B TedeHHE
MIEPEXOHOTO TPOIlecca O YCTAHOBIEHMs CTalMOHapHOro pacmpeneneHus. Lleqb — pa3paboTka TEXHOJOTHH OTBICKAHHS
AQHATUTHYECKUX COOTHOIIEHHH, OMMCBHIBAIONIMX JUHAMHUKY BEPOSTHOCTEH COCTOSHUH IMOJYyMapKOBCKOH CHUCTEMBL. 3amadya —
pa3paboTka MaTeMaTHYECKO MOJENH, aJeKBaTHO ONKCHIBAIONICH AMHAMHKY BEPOSITHOCTEH COCTOSHHN CHCTEeMBI. VcxoaHble
JIaHHBIE JUIS PEeLeHUs 3a7add — MaTpHLa YCIOBHBIX 3aKOHOB paclpeleneHus CIydaifHOH MpOJOIKUTEILHOCTH NPEeObIBAHMS
CHCTEMBI B KaXXIOM M3 BO3MOJKHBIX €€ COCTOSHHI JI0 Iepexoja B Kakoe-THOo apyroe cocrosHue. Metoa. TpaaunnoHHBINH
METOJ| aHaJu3a MOJYMAapKOBCKUX CHCTEM OTPAHUUYMBACTCS IIOJyYEHHEM CTAIl[MOHApHOIO paclpeselieHUsl BeposTHOCTEl ee
COCTOSIHHUH, YTO HE pellaeT MOCTaBICHHYIO 3a/1ady. M3BeCTHBIN MOaX0/] K PEIICHHIO ATOH 3aa4 OCHOBAH Ha (HOPMUPOBAHUH
U PEIIEHUU CHUCTEMBbl UHTErpalbHbIX ypaBHeHuH. OpHako B oOIieM ciydae A IIPOU3BOJIBHBIX 3aKOHOB pPaclpeleieHus
MIPOJIOIDKUTENFHOCTEH MpeOBIBAaHKS CHCTEMBI B BO3MOJXKHBIX CBOHMX COCTOSHHSX OJTOT IOIXOJ HE peanm3yeM. MckoMmbrid
pe3ysNbTaT MOXET ObITh IOJIYYeH TOJBKO YHCIEHHO, YTO HE YJOBJICTBOPSIET MOTPEOHOCTH MpakTHKU. {1 mosydeHus
TpeOyeMBIX aHAMTUYECKUX COOTHOLIEHHUH HCIIONB3YETCs IPIAHTOBCKAsl allIPOKCHMAIINS UCXOAHBIX 3aKOHOB PacIpeaeICHIsL.
OTOT HNpUEM CYLIECTBEHHO MOBBIIIAET aJeKBATHOCTh HOJIyYaeMbIX NPH 3TOM MaTeMaTH4eCKUX Mojenel (GyHKIHOHUPOBAHUS
CHUCTEMBI, TaK KaK I03BOJIAET OTOWTH OT YPE3MEPHO OOS3BIBAIOIIMX SKCIOHCHIMAIBHBIX ONHCAHUM HMCXOAHBIX 3aKOHOB
pacnpenenenus. @DopmanbHas OCHOBAa IIPEUIOKEHHOTO METOJa IOCTPOCHUS MOJEIM JAWHAMHUKH BEpOATHOCTEH
COCTOSIHUI — cHcTeMa auddepeHIHaTbHbIX ypaBHeHHH KoIMOropoBa OTHOCHTENBHO HCKOMBIX BEpOSTHOCTEW. Pemenne
CHCTEMbl YpPaBHEHHH JOCTHUraeTcs C HCIOJIb30BaHUEM IIpeoOpazoBanus Jlamnaca, KOTOpo€ JIETKO BBIIOJHHUMO JUIS
9PJIAHTOBCKUX paclpesieIeHUi IPOU3BOIbHOTO nopsaaka. Pe3yabrarsel. [lomydeHsl aHanUTHUECKHE COOTHOIICHHUS, 3a/Iaf0lHe
HCKOMOE pacIpelielieHue BEpOATHOCTEH COCTOSHMN CHCTeMBbl Ha J100OH MOMEHT BpeMeHH. MeroJ OCHOBaH Ha
amNMpOKCHMANUK 3aKOHOB PACIpeNeNieHus] POIOJDKATENBHOCTEH MPeObIBaHUS CHUCTEMBI B KaXXIOM W3 BO3MOXKHBIX CBOUX
COCTOSIHUH paclpeneneHusIMH DpiiaHra HaJjiexkalero nopsaka. [IpyHIMNManIsHBIM MOTUBHPYIOIIUM OOCTOSITENBECTBOM JUIS
BBIOOpA B IEJISIX alllPOKCUMAIMN paclpeeJIeHUiH HMEHHO 3TOTO THIIA SIBISIETCS TPOCTOTA MX MCIOJIB30BAHHS JUIS MTOTYISHHS
aJleKBaTHBIX MoJenell (PyHKIMOHUPOBAHUS BEPOSTHOCTHBIX CHCTEM. BbiBoabl. IIpuBeneHO pelleHHe 3afauy aHAIM3a
[OJTyMapKOBCKOM  CHCTEMBI A7 KOHKPETHOTO YacTHOTO  Clydas, KOIZla MCXOJIHbIE 3aKOHBl  paclpeAeieHHs
MIPOJOJDKUTEIFHOCTH €€ TpeObIBaHUA B BO3MOJKHBIX COCTOSHUSIX —AaNNIPOKCUMHPYIOTCS pacIpelefeHUsAMH OpliaHra
BTOpOro nopsaka. IlomyueHsl aHaIUTUYECKHE COOTHOIICHMS U pacdyeTa pacHpesieNieHus] BEpOsTHOCTEH Ha 11000 MOMEHT
BpEMEHHU.

KiiouyeBble cjI0Ba: IOJIyMapKOBCKas CHUCTEMA; MOJENIb AWHAMUKH BEPOATHOCTEH COCTOSIHUI; aNMpOKCUMUPYIOILUE
pacrpenenieHus JpiaHra; aHaIMTHYECKUHA pacdyeT BEpOATHOCTENH COCTOSHHM.
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