DOI: https://doi.org/10.30837/2522-9818.2018.6.062

THEORETICAL BASES OF OPTIMIZING A TOOL IDLE MOTION WHILE MILLING COMPLEX SURFACES

Антон Олегович Скоркін, Олег Леонідович Кондратюк, Олена Павлівна Старченко

Abstract

The subject matter of the article is the impact of the sequence of changes for auxiliary time spent on idle motions of a machine unit when changing a machinable area or when changing tools. The goal of the study is to improve the finishing milling capacity when machining geometrically complicated parts by minimizing auxiliary time, which enables determining the optimal sequence of changes. The following tasks were solved in the article: the main approaches to developing general strategies for machining geometrically complicated parts were determined; algorithmic solutions and methods for determining the best route for moving tools from site to site were analyzed as well as the advantageous sequence of machining geometrically complicated parts, taking into account motion limitations and constraints for tool life; a mathematical model of minimizing idle motions when changing machinable areas and tools on the basis of the point description of the part geometry. The following methods were used: theoretical and experimental research methods including the system and structural analysis; the methods of mathematical statistics; numerical methods of advanced mathematics, the graph theory. The following results were obtained. As a result of complex theoretical and experimental studies, methods for optimizing particular and general strategies when machining geometrically complicated parts were identified; a method for determining the optimal route of cutters of the same size when moving within a group of machinable areas was developed; based on the point description of the part geometry, a mathematical model for minimizing idle motions when changing machinable areas was developed; the parameters that minimize the idle motions when changing machinable areas and provide the implementation of algorithms for calculating the lengths and positions of local clearance plane for sequentially machined sections are determined. Conclusions. The use of approaches to develop common strategies for machining geometrically complicated parts contributes to an increase in the capacity and efficiency of using expensive multi-purpose machines. The use of this method for determining the best route for moving the tools enables determining the route variant with the minimum value of the auxiliary time spent on idle tool motions.

Keywords

CNC; tool; milling; designing; geometrically complicated parts; finishing treatment

PDF (Українська)

References

Radzevich, S. P. (2001), Shaping surfaces of parts [Formoobrazovanie poverhnostej detalej], Rastan, 592 p.

Directory technologist-mechanical engineer [Spravochnik tehnologa-mashinostroitelja] / Edited by A. M. Dalsky, Moscow : Engineering-1, 2003, 912 p.

Shikin, E. V., Boreskov, A. V. (2000), Computer graphics. Polygonal models [Komp'juternaja grafika. Poligonal'nye modeli], Moscow : DIALOG-MIFI, 464 p.

Skorkin, А., Kondratyuk, O. (2017), "The basic principles of the integrated management of the process of assembly and threading", Innovative Technologies and Scientific Solutions for Industries, No. 2 (2), P. 77–85. DOI: https://doi.org/10.30837/2522-9818.2017.2.077.

Baranchukova, I. M., Gusev, A. A., Kramarenko, Yu. B. et al. (1999), Designing Automated Engineering Technology: Proc. for machine building. specialist. universities / ed. Yu. M. Solomentsev, 2nd ed. M.: Higher. Sc., 416 p.

Kormen, T. et al. (2005), Algorithms. Construction and analysis / Trans. from English I. V. Krasikova, N. A. Orekhova, V. N. Romashova, 2nd ed., Moscow : Williams, 1290 p.

Baldacci, R., Hadjiconstantinou, E., Mingozzi, A. (2004), "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation", Operations Research, Vol. 52, P. 723–738.

Wallner, J. (2001), "Smoothness and Self-Intersection of General Offset Surfaces", Geometry, Issue 70, P. 176–190.

Archetti, C., Hertz, A., Speranza, M. G. (2006), "A tabu search algorithm for the split delivery vehicle routing problem", Transportation Science, Vol. 40, P. 64–73.

Baldacci, R., Hadjiconstantinou, E., Mingozzi, A. (2004), "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation", Operations Research, Vol. 52, P. 723–738.

Barnhill, R.E., Farin, G., Fayard, L., Hagen, H. (1988), "Twists, Curvatures and Surface Interrogation", Computer Aided Design, Vol. 20, No. 6, P. 341–346.

Beck, J. M., Farouki, R. T., Hinds, J. K. (1986), "Surface Analysis Methods", EEE Computer Graphis and Application, Vol. 6, No. 12, P. 18–36.

Clarke G., Wright, J. W. (1964), "Scheduling of vehicles from a central depot to a number of delivery points", Operations Research, No. 12, P. 568–581.

Cohen, E., Lych, T., Schumaker, L. (1986), "Algorithms for degree raising for splines", ACM Transactions on Graphics, Vol. 4, No. 3, P. 171–181.

Aksen, D., Zyurt, Z., Aras, N. (2006), "Open vehicle routing problem with driver nodes and time deadlines", Journal of the Operational Research Society, Vol. 58, Issue 9, P. 255–261.

Dill, J. C. (1981), "An Application of Color Graphics to the Display of Surface Curvature", SIGGRAPH, P. 153–161.

GOST Style Citations

1.   Радзевич С. П. Формообразование поверхностей деталей. Растан, 2001. 592 с.

2.   Справочник технолога-машиностроителя / Под ред. А. М. Дальского. М. : Машиностроение-1, 2003. 912 с.

3.   Шикин Е.В., Боресков А.В. Компьютерная графика. Полигональные модели. М. : ДИАЛОГ-МИФИ, 2000.
464 с.

4. Скоркін А.О., Кондратюк О.Л. Основні принципи комплексного управління складально-різьбоутворюючим процесом. Сучасний стан наукових досліджень та технологій в промисловості. 2017. № 2 (2). С. 77–85.DOI: https://doi.org/10.30837/2522-9818.2017.2.077.

5.   Баранчукова И.М., Гусев А.А., Крамаренко Ю.Б. и др.Проектирование технологии автоматизированного машиностроения : Учеб. для машиностроит. спец. вузов / Под ред. Ю.М. Соломенцева. 2-е изд. М. : Высш. Шк., 1999. 416 с.

6.   Кормен Т. и др.Алгоритмы. Построение и анализ / пер. с англ. И. В. Красикова, Н. А. Ореховой, В. Н. Ромашова. 2-е изд. М. : Вильямс, 2005.1290 с.

7.   Baldacci R., Hadjiconstantinou E., Mingozzi A. An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation.Operations Research. 2004. Vol. 52. P. 723–738.

8.   Wallner J. Smoothness and Self-Intersection of General Offset Surfaces.Geometry. 2001, Issue 70. P. 176–190.

9.   Archetti C., Hertz A., Speranza M.G. A tabu search algorithm for the split delivery vehicle routing problem, Transportation Science. 2006. Vol. 40. P. 64–73.

10. Baldacci R., Hadjiconstantinou E., Mingozzi A. An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation. Operations Research. 2004. Vol. 52. P. 723–738.

11. Barnhill R.E., Farin G., Fayard L., Hagen H. Twists, Curvatures and Surface Interrogation.Computer Aided Design. 1988. Vol. 20. No. 6. P. 341–346.

12. Beck J.M., Farouki R.T., Hinds J.K. Surface Analysis Methods.EEE Computer Graphis and Application. 1986. Vol. 6. No. 12. P. 18–36.

3.   Clarke G.,Wright J.W. Wright Scheduling of vehicles from a central depot to a number of delivery points.Operations Research. 1964. No. 12. P. 568–581.

14. Cohen E., Lych T., Schumaker L. Algorithms for degree raising for splines.ACM Transactions on Graphics. 1986. Vol. 4. No. 3. P. 171–181.

15. Aksen D.,ZyurtZ., Aras N. Open vehicle routing problem with driver nodes and time deadlines.Journal of the Operational Research Society. 2006. Vol. 58. Issue 9. P. 255–261.

16. Dill J.C. An Application of Color Graphics to the Display of Surface Curvature. SIGGRAPH. 1981. P. 153–161.

Copyright (c) 2018 Антон Олегович Скоркін, Олег Леонідович Кондратюк, Олена Павлівна Старченко

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

All the articles published in ITSSI journal are licensed under CC BY-NC-SA 4.0