ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2019. No. 3 (9)

UDC 004.424 DOI: https://doi.org/10.30837/2522-9818.2019.9.062

S. VELYKODNIY

REENGINEERING OF OPEN SOFTWARE SYSTEM OF 3D MODELING BRL-CAD

Computer Graphics is an up-to-date industry in the design and application of rapidly evolving computing systems. The subject of the
work is designing a graphical user interface. The purpose of the work is to perform reengineering (evolutionary improvement while
maintaining the positive qualities that are confirmed by the operation) of an open-source three-dimensional software system with
inheritance of full functionality and principles of operation. BRL-CAD is a specialized open source cross-platform system that is a
powerful 3D computer aided design system for bulk body modeling. The software system includes an interactive geometric editor,
parallel ray tracing, rendering and geometric analysis. Objectives: To summarize the results of experimental studies at the level of
representation of classes, components and use cases, which must be submitted using a unified modeling language — UML, with the
processing and interpretation of results at the level of CASE-tool; to analyze the source code translation of the redesigned BRL-CAD
graphical user interface. Methods. The process of designing or redesigning new software products is ineffective without using the
UML methodology, but with its adherence — the speed of development is increased several times over. In this paper, we use the UML
2.5 methodology using the Enterprise Architect 14.0 CASE toolkit. Results. The main focus is on three diagrams: classes, use cases
and components. Based on these diagrams, code generators and programmers continue to work, while other (auxiliary) diagrams are
intended to explain some of the complex specifications of the project, which does not, however, diminish their relevance within the
project. The present study summarizes the results of experimental studies; source code translation results are analyzed and
summarized, the main one being the reduction in the complexity of creating open source software using the BRL-CAD example.
Conclusions. BRL-CAD is acceptable for the experienced designer, but for the beginner or student, its application process will be
very complicated. A thorough analysis of the environment revealed the presence of two modules contained in the structure of the
system that help the potential user to quickly design and model. Also fundamental to the package is the ability to support the design
and analysis of visual models based on complex objects, consisting of a large set of graphic primitives. The powerful side of the
system is the extraordinary speed of visual means, ray tracer and rendering. Compared to analogs, it can be state that the visualization
process is one of the fastest among the existing ones.
Keywords: reengineering; software system; computer graphics; 3D modeling; diagram; CASE tool; class.

Introduction

Formulation of the problem

Nowadays, there are a large number of software
tools that perform a large number of specialized tasks.
Some of them are tied to only one industry, others are
used in large numbers, but the trend is by specializing in
software as a whole.

One of the important components of computer
aided design (CAD) is computer graphics, which is a
collection of tools and techniques used to input,
convert, and output from specialized graphic
information environments. Computer Graphics is an up-
to-date area of design and application of advanced
computer systems. The term "computer graphics" means
the computer processing of information and the
output of results in the form of various graphic
images. The data needed to display the results in a
graphical format is created on the basis of
graphical information. Particular interest in computer
graphics began to emerge in connection with
the intensive development and implementation of CAD
not only in engineering, instrumentation, radio
electronics, interior design, but also in other industries and
training.

A distinctive part of the tasks of computer graphics
is the processing of graphic databases (GDB), which are
essentially "ordinary" databases, but which are based on
mathematical algorithms for image recovery based on the
generated statistical coordination data. Not every SAP is
able to do this, but current trends simply require it. A large
number of software systems (SS) are developed with a
wide range of modeling characteristics, BRL-CAD is one
of such SS.

Graphic information is the most capacious and visual
representation of a large amount of information, however,
the practical application of machine graphics has long
been constrained by the lack of appropriate equipment and
mathematical support. The logic and formality of
computer models allows us to identify the main factors
that determine the properties of the object under study (or
a whole class of objects), in particular, to investigate the
response of a physical system, which is modeled on
changes in its parameters and initial conditions.

Building a computer model is based on an
abstraction of the specific nature of the phenomena or
object under study and consists of two stages: first,
creating a qualitative and then a quantitative model.
Computer simulation itself is the conduct of a series of
computational experiments on a PC, the purpose of which
is to analyze, interpret and compare the simulation results
with the actual behavior of the object of study and, if
necessary, further refinement of the model.

The solution of the problems is impossible without
deep penetration into the physical essence of the
phenomena studied, the development and improvement of
the relevant theoretical provisions, implementation of the
achieved results in production. Geometric methods have
long and successfully been used in many industries. An
important role here should play new methods of geometric
modeling and their implementation in computer graphics
systems, which will allow to solve the problems of special
disciplines.

Designing engineering, industrial, civil engineering
and radio electronics is entering a new phase of its
development, when, along with the increasing complexity

© S. Velykodniy, 2019

CyuacHuii cman HayKko8ux 00ciiodcenb ma mexHonoeitl 6 npomuciosocmi. 2019. Ne 3 (9)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

of projects, shortening the design time and reducing the
number of designers should be ensured largely by the
automation of design and computerization of engineering
work.

One of the main advantages of 3D modeling is the
rapid formation of drawings. It is possible to use the
results of modeling in the further stages of product
development - this is another advantage of solid state
modeling [1]. Open-source software is software for which
(source) software is available that provides the best
conditions for learning about such software and for
making further changes (improvements) to it [2].

Quite often, this concept is considered to be free
software, which is not absolutely correct. The most
significant difference is that free software licenses
stipulate that all further modified versions of such
software must also be distributed as free software, while
most open source licenses grant complete freedom to the
authors of the modified versions. As a result, free software
is always open source software, but the opposite is not
always true.

Analysis of research and publications

When conducting research and publication analysis,
particular attention was paid, in a scientific sense, to the
methods used in dealing with complex graphical objects.
The basic scientific geometrical methods used in graphical
modeling of objects, processes, phenomena in engineering
and tendencies of their development are considered below
[3]. For the direction of scientific research solid modeling
of objects that are formed (and change in time) under the
influence of various external factors is selected.

Computer modeling is one of the effective methods
of studying any complex systems that can be visualized.
Computer models are easier and more convenient to
explore because of their ability to perform so-called
computational experiments [4], in cases where real
experiments are complicated by financial or physical
obstacles or may produce unpredictable results [5].

3D Object Description is a three-dimensional
representation of an object. As a rule, these measurements
are represented as X, Y, and Z coordinates. It is possible to
have data with identical X and Y coordinates with a
different Z coordinate. For example, 3D is used for digital
representation of ocean flows [6].

Solid-state modeling is the most sophisticated and
reliable method of creating a copy of a real object, a
natural way of expressing the essence of a product [7].

Rendering in computer graphics is the process of
obtaining a model image using a computer program [8].
Here, the model is a description of three-dimensional
objects (3D) in a strictly defined language or as a data
structure. Such a description may include geometric data,
position of the observer point, information about lighting.
An image is a digital bitmap. Typically, rendering refers
to the imposition of a texture on an already-finished solid-
works model in mechanical engineering [9] and on a
framework in engineering graphics.

Ray tracing in computer graphics is a way of
creating an image of three-dimensional objects or scenes

by tracking the progress of a light beam through a point of
screen and simulating the interaction of that beam with
imaginary objects to be displayed [10]. This method
allows to create extremely realistic images, usually of a
much higher quality than the typical Scanline algorithm or
Ray casting, but has a much higher computational
complexity. For this reason, ray tracing algorithms are
used where there are no significant restrictions on
rendering time.

Boundary representation is a description of the
boundaries of an object or the absolute analytical task of
the faces that describe the body [11]. This method allows
to create a high-quality image of a geometric solid to
establish mutual alignment, you need to specify the
borders or contours of objects, as well as sketches of
different types of objects, and specify the lines of
connection between these species. Methods for the
determination of complex contours and vectorization of
raster models were considered in [12].

There are methods of boundary (B-Rep) and
constructive (C-Rep) representation for the creation of
GDB [13]. In a B-Rep system, models are built from
solid-state primitives. These primitives are determined by
size, orientation, shape, and point of attachment. C-Rep
construction tools are Boolean operations; they are based
on algebraic set theory [14]. The most commonly used
operations are difference, intersection, and union. Each of
these methods for creating volumetric models has pros
and cons compared to others. For systems with a C-Rep
view, the advantage is the primary model formation. In
addition, this presentation provides a more convenient
description of the models in the GDB. The B-Rep method
is relevant in the formation of complex structures that are
very difficult to reproduce with the C-Rep method. The
advantage of B-Rep systems is to simply change the
boundary view into a frame model and reverse it. The
reason is that the description of the boundaries is similar
to the description of the frame model. For example, the
design of injection molding and molding is a traditional
area of solid, three-dimensional motion simulation. The
most obvious difference from two-dimensional drawing is
the accurate creation of a large-scale computer model.

Highlighting the unsolved parts of a common problem.
The goal of the work

BRL-CAD is a specialized open source cross-
platform system. It is a powerful 3D CAD for bulk body
modeling by CSG. This CAD includes an interactive
geometric editor, parallel ray tracing, rendering, and
geometric analysis. BRL-CAD has been in development
for close to 40 years and has been deployed in the US
military. The whole BRL project works from source code,
so it can be used on any platform: GNU/Linux, MacOS,
Solaris and Windows.

Here are some of the defining features of open
source software and design technologies for GDB that we
will rely on in the following sections of the overall study.
Raw code (usually just "raw", also "source code",
"program code", "program text", English: "source code") —
any set of instructions or ads written in programming

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2019. No. 3 (9)

language and in a form that can be read by a person. The
source code allows the programmer to communicate with
the computer using a limited set of instructions. A
program code is a collection of files that are required to be
converted from readable form to some type of computer
executable code. There are two possible ways to execute
raw code: translate to machine code using a compiler
(designed for a specific computer architecture) or run
directly from text using an interpreter.

One of the first CAD with such characteristics
appeared because in 1979, ballistic research laboratory
U.S. army (U.S. Army Ballistic Research Laboratory
(BRL), now — United States Army Research Laboratory,
expressed an urgent need for tools and means that could
help in computer simulation and engineering analysis of
combat weapon systems (tanks, missiles, planes, etc.) and
their working conditions. When none of the CADs that
existed at that time, was not ready to achieve this goal, the
developers of BRL started to collect a Suite of utilities
capable of interactively review and edit trees for
geometric models. Programmers have begun to develop
their own Suite of applications designed to display, edit,
and combine geometric models. In this way was
established BRL-CAD application package for solid
modeling (constructive solid geometry — CSG).

The first public release was made in 1984. In
December 2004, BRL-CAD became an open source
project. It is very important that BRL-CAD is licensed
under the * BSD and GNU LGPL licenses. Since then,
this CAD has been evolving and new opportunities are
emerging.

Today, thanks to about a million lines of C code,
BRL-CAD has become a powerful graphical simulation
package that came the use of more than 2 thousand
organizations around the world. BRL-CAD
simultaneously supports two methods of user interaction:
command-line and graphical user interface (GUI). The
system also supports a variety of geometric tools with
graphical information: a large set of traditional CSG
primitive solids (APSDI, cones, tori), as well as a clear
solid (from private collections) of the uniform b-spline
surfaces nonuniform rational b-splines (NURBS), n-
diverse geometry, the faceted mesh, and the like. All
geometric objects may be combined using Boolean set-
theoretic operations, including the CSG-unions and
intersections.

The most important feature of a system is its ability
to design and analyze realistic models based on complex
objects consisting of a large set of primitive shapes.
Boolean operations are used to construct complex objects:
join, subtract, and intersect. Another powerful side of
BRL-CAD is the speed of rendering tools and the ray
tracer, which is one of the fastest among the existing ones.
Finally, BRL-CAD users can design models with high
precision, from subatomic to galactic scales on the
principle of "seeing all the details all the time".

However, one of the big drawbacks of BRL-CAD,
which is a huge problem for the user, is the lack of a clear
graphical user interface for the product, which has been

anticipated and improved for several years in the
perspective of the developer corporation of this software.
In addition, the very linguistic support for the submission
of GDB ("C") in the BRL-CAD CAD system requires the
transition (re-engineering) into high-level languages
("C++" or "C#") [15].

From here it is possible to formulate the purpose of
the work — to perform reengineering (evolutionary
improvement while maintaining the positive qualities,
which is confirmed by the operation) of the open-source
three-dimensional design with inheritance of full
functionality and principles of operation.

Achieving the goal is possible when performing a set
of established research objectives: to summarize the
results of experimental studies at the level of
representation of classes, components and use cases (UC),
which must be submitted using a unified modeling
language — UML, with the processing and interpretation of
results at the CASE level; analyze the source code
translation of the redesigned BRL-CAD.

Materials and methods

Today, the process of designing or redesigning new
software products is not efficient without the use of the
UML methodology, but with its observance — the speed of
development is increasing several times [16]. To achieve
this goal, use the UML 2.5 methodology [17] using the
Enterprise Architect 14.0 CASE toolkit.

Use case diagram. In order to disassemble and create
a chart, you need to decide on the actors and precedents of
the chart, so let's start by looking at the main "exe" files of
the software. There are only two of them: "Archer" and
"MGED". These will be our actors. We will deal with
adjusting their specifications later, and it is now important
to determine the precedents that fit each one. To do this,
we run each executable file and look at their capabilities.
"MGED" is the main software module responsible for
designing, modifying and tracing beams. It looks like that
at a fig.1.

In addition to the console and GUI (graphical user
interface) there are additional features in the top menu, we
list the main:

- File — basic commands, including ray tracing;

- Edit — is responsible for changing simple and
complex shapes using different methods;

- Create — create simple figures and complex
hierarchies of simple figures;

- View — change the angle and viewpoint;

- Settings — general settings for work;

- Modes — modules (one of the unofficial mandatory
features of free software), which are paid and free;

- Tools — tools for working with figures and
graphics;

- Help — help files and manuals.

These are all functions that will be the first level of
precedents in the diagram, so we will create them
immediately (fig. 2).

CyuacHuii cman HayKko8ux 00ciiodcenb ma mexHonoeitl 6 npomuciosocmi. 2019. Ne 3 (9)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

MGED 7.26.0 Graphics Windo
File Edit Create View

Misc

Tools Help

lisc Tools Help

mged>

eful,. but
D:\BRLCAD 7.26.

-26

-26
.26
-26

-26

.26

O>REM

-0O>REM

-O>REM
-O>REM
-O>REM

-O>REM

-O>REM

WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General

License along with this file; see the file named COPYING f

information.

-26 .0>REM

cent=(0.000 0.000 0.000) sz=1000.000 mm az=35.00 el=25.00 tw=0.00 ang=(0.00 0.00 0.00)

Fig. 1. Interface "MGED"

uc MGED /

Creating Simple
Figures And
Hierarchies

Editing Simple
Shapes And
Hierarchies

Supporting Files
And Instructions

Graphic Mapping

Tools

/MGED\

Connection Modules

Change Angles And
View points

Graphic Display
Settings

Ray Tracing

Fig. 2. The first level of precedents for "MGED"

At this stage of the work it is important to determine
the type of actor and precedents and their relationship with
each other [18]. All objects are user-interacting modules,
and they have special stereotypes called "business use
case" for precedent and "business actor" for diagram. In
this particular case, we will show the business stereotype
only for the actor, so it will be logical and clear from the
links that all the following precedents are connected with
it. We have decided on the stereotypes, so we go for
connections.

The first level precedents are the user capabilities of
this software product. There is a special type of use in the
connections of this diagram, the essence of which is that it
shows the use of the capabilities of any actor or precedent
[19]. It describes this level in the most detail, so it shows

that precedents of the "simple figure" type are one of the
advanced features of the "MGED" actor. The only
difference between the precedents will be "External
modules" — they are not required to work, so we will use
another type of communication called "subscribe", which
means "description”. In essence, it helps to describe any
module and in our case this module is the actor "MGED".
After the arrangement of relations and stereotypes we get
the result as in fig. 2.

The second layer of the UC-diagram will be the
creation of a package diagram (fig. 3) containing these UC
and realizing the capabilities of the first layer [20]. To do
this, open the specification of each of the functions in the
command graph and detail the commands as precedents.
The type of connections used in the diagram:

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2019. No. 3 (9)

"nesting"

empowerment of actors;

shows the content and additional

"compose" — composite connection;
"realize” — implementation of functions.

However, if you implement all the precedents in the
diagram, you will get an overload of elements, which is
incorrect, so we consider each precedent of the first level

as a package.

7
Ray Tracing

> + Background Color

Supporting Files And Instructions |

pkg MGED /
Editing Simple Shapes And Hierarchies
» + Complex Figures Editor
@ @ @» + Matrix Election
» + Primitive Editor
BRL-CAD @ + Primitives Combining
7z
7
Change Angles And View points
D + Bottom View L
@ + Coordinate View L
i 7
Front Vi " N
() ReliTT - Graphic Mapping Tools
D + Left Side View 5
<t-------- @ +Right Side View [T~~~ > ()l
& +Top View @ + Animate
@D + Zoom (+/-) <) | + Grid
@ + Quere
Archer «business actor»
+ Raytrace
& MOED g JPaE S
\ pgrade Database
\ PR
7 AN
7/ \
. 7 N
\ Connection Modules / N
\ / A

Creating Simple Figures And Hierarchies

» + Background Purpose
@» + Size
> + Source Of Rays

@ + About The MGED

@ + Auxiliary Figures

@ + Creating Hierarchies
@ + Creating Simple Figures
> + Cylinders And Cones

@ + Searching System
@ + User Manual

@ + Ellipsoids
@ + Primitives

Fig. 3. Package diagram for MGED

The last step, small but not least, is to set the
specifications for the actors — all the actors are software
modules that are involved with the user, that is, they
represent the interface. For this type of modules there is a
special specification called "business"”, we will use it. This

concludes the construction of the UC-diagram.

Generic steps for developing a new product
architecture. To develop the architecture of a new

already

product, we use
components, and UC.

Step 1. First of all, it is necessary to determine the
functionality of the future SS, how much it will differ
from the original product, what changes will be made.
Therefore, according to the principle of diagramming
used [21], we construct new UC that are
functionally integrated into packages (fig. 4).

three

pkg New_Pr /
Toolkit

(O + Database Upgrade
@ + Graphic Display
@ + Grid

@ + Quere

@ + Ray Tracing

Working Angles Changing

» + Coordin

D

» + Zoom

ate Systems

(» + Rotation In Space

A

D

SPISY)

7]

«package»

Connection Modules

Ray Tracing

New _Product

» + Graph

D + Size

» + Reflection

» + Sources Of Rays

ic Range

Editing:

@ + Complex Figures
@ + Hierarchies

@ + Matrices

@ + Primitives

7]

Creating Figures And Hierarchies

& + Auxiliary Figures
{» + Graphic Primitives
i + Hierarchies

» + Simple Figures

Fig. 4. Package diagram containing the UC of a new product

CyuacHuti cmam HayKo8ux 00CaiONceHb ma mexnoaoit 6 npomuciosocmi. 2019. Ne 3 (9)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

In the process of developing this diagram, it was
decided that the functionality of the central module
("New_Product™) should be left approximately the same
as it was, and all additional complex functions should be
included with the help of external modules. This allows
you to not overload the SS with unnecessary commands,
which will have a good effect on its performance level.

The packages responsible for performing the
functions have the appropriate names: "Changing the
Working Angles”, "Edit", "Creating Shapes and
Hierarchies", "Ray Tracing". They refer to the central
module "New_Product" as composite dependencies. Each
of these packages has UC directly related to the function
of the specific package. The packages that are responsible
for connecting the additional tools also have the
appropriate tools named: "Tools", "Connection modules™
and the relation to the central module "New_Product” in
the form of aggregations. Also, the toolkit package
includes UC, with the help of which graphical, logical,
informational and other transformations and changes are
performed (fig. 4).

Consider the chart using a relation of "Nesting" type,
it means a hierarchical arrangement within one package
function calls another. That is, if to take for a basis
diagram in fig. 4, then, for example, the function "Edit" is
called only after creating the shape or hierarchy (package
"Creating shapes and hierarchies™) or also "Edit" is also
available as a component of changes after activation of the

package "Changing the working angles". Also call
functions of the package "Ray Tracing" is available after
activation of the package "Changing the working angles",
which, in turn, is visualized result (result) package
"Toolkit" that is a set of software modules (package "plug-
ins") which is the corresponding ratio "Nesting".

Analyzing the package diagram further, it should be
added that the Toolkit uses the "Nesting" relations to
include the "Ray Tracing" and "Create Shapes and
Hierarchies" packages, which means that the functions of
these two packages are only possible using the appropriate
toolkit.

Step 2. After defining the functionality of the
software, the next step is to draw up a working class
diagram. The class diagram is made according to the
specification of the new language and the successful
solutions of the primary software product. As a result, the
sketch diagram of the new software product looks like the
one in fig. 5. Unfortunately, the number of classes and,
accordingly, the size of the diagram is so large that the
author is not able to present it in full view within the A4
sheet. If to decompose the diagram, the complete
representation of the class model is lost, so we give only
its sketchy representation (fig. 5). The main purpose of the
sketch of the diagram: not to show the filling of classes,
but to illustrate a model of hierarchical relations of
boundary combinations of classes of a new software
product.

s

T
\

P

Fig. 5. A complete diagram of the hierarchy of classes of a new software product

The architectural changes made to this diagram
sketch began with a full visual breakdown of the modules.
Each unigue module is assembled into its own separate
rectangle — boundary, which will undergo the entire
process of calculation. Another feature: there is a central

class "Main", which is responsible for the interaction
between the modules. Each module has its own boundary
class, which interacts with all other parts of the SS and
closed computing systems and databases. This method

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2019. No. 3 (9)

was chosen to minimize the number of connection errors
and to help programmers improve the product.

Step 3. The class diagram is modeled; we go to the
code generation process. It will be unnecessary to dwell
on the details of the technical implementation of the
generation process, so we will illustrate only the final
result (fig. 6). After code generation, for example, take the

¥NopRaoUnTE v

-

JoBaenTe B GuBAnoTeky *

class "main" (fig. 7). To understand how well the code is
generated, let's look at the number of links to plugins.
Comparing them with the class diagram, we come to the
conclusion that everything is right. This development of
the architecture of the new software product can be
considered complete.

OBwniA goctyn ~ 3anwncarte Ha

T WzBpannoe =] base proc & mapped file |2 shell
& Zarpyskin & color scale & material & solid
| Hepasrue mecta |&] color = member = tabdata
Bl PaGounii cron || coler_norm] metball & types
|&| combine = model =] unif
- BuBanoTexn =] complex = multipoly & v_math
E Bugeo |='| constants & nerb =] vertex
3 JokymenTel |&| constraint internal |&| object =] xray
= WN=oBpakerna |&] count = orb
& Myzeika = =] eutter =] part
=] database |&] point
& [omalunas rpynna =] directory =] poly
=] face =] polydata
8| Komnerotep |='| gauss |=] Procceces
‘-._L. JNokaneHeIi guck (=] head |=] raytrace
= dock's (D) |2 hyp =] rec
a Nokanbheii guck (| =] image file |=] region
@ Nunckosoa BD-RON [loop =] rex
Fig. 6. Location of the code
12 [Hpublic class main {
14 public rtgeom m rtgeom;
15 public database m database;
16 public raytrace m raytrace ;
17 publie Procceces m Procceces;
18 public raytrace m raytrace ;
19 public shell m shell;
20 public v_math m v_math;
21 public base proc m base proc; 5
22 public member m member;
24 [public main(){
25
26 | }
27
28 [~main () {
29
30 }
32 (=) public wvirtwmal wvoid Dispose(){
34 }
34 “}//end main i
C# sourcefile length: 674 lines: 36 Ln:21 Col:34 Sel:0|0 Dos\Windows ANST INS

L

Fig. 7. Program code of the class "main"

Research results and discussion

Results. This article summarizes the research on the
reengineering of open-ended CAD using the BRL-CAD
example. The study was performed and its results were
simulated using the UML 2.5 methodology using the
Enterprise Architect 14.0 CASE tool. The UML
methodology is quite voluminous and several diagrams
that are used to design a new software product have been
considered in the project.

The main focus is on three diagrams: classes, UC
and components. This is due to the fact that directly on the
basis of these diagrams, code generation and further work

of programmers takes place, while other (auxiliary)
diagrams are intended to explain some complex
specifications of the project, which does not however
diminish their significance within the project.

Summarizing the results achieved, it can be stated
that at this study:

a) the results of experimental studies at the level of
representation of classes, components and UC are
presented, which are presented using the unified modeling
language — UML, with the processing and interpretation of
results at the level of CASE tools;

b) the results of source code translation were
analyzed and summarized, the main of which was to

CyuacHuii cman HayKko8ux 00ciiodcenb ma mexHonoeitl 6 npomuciosocmi. 2019. Ne 3 (9)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

reduce the complexity of creating an open-source software
using the CAD of BRL-CAD type.

Discussion. In the most progressive countries of the
world, new products have not been developed from
scratch for a long time, and tools are being used to help
create the structure you need much faster and more
efficiently. The UML methodology and related software
are for this purpose — to increase development efficiency
and to structure data. This methodology has been actively
used recently (close to 10 — 15 years), but very quickly
integrated into the overall structure of the development.
The convenience of the existing SS reengineering
methodology is that it is not rigidly tied to any of the
development methods and is flexible to use.

The development of a UML methodology for reverse
engineering is characteristic of the West and parts of
Europe. At the beginning of the research (that is, in 2009),
our country's specialists have just started working on the
active exploitation of this methodology as it is presented
now.

The open and free BRL-CAD was a great
experimental model for the job. The advantage of such
systems is that they are licensed under a free license and
there are no legal problems with copying, modification
and other software-related actions. It should also be noted
that since the code is open source, the developers tried to
make it even understandable - this is facilitated by a large
number of comments in the code.

Conclusions and prospects for further development

Conclusions. BRL-CAD is acceptable for the
experienced designer, but for the beginner or student, its
application process will be very complicated. The WAN
does not have any materials in Ukrainian or Russian that
at least superficially describe the operation of the system
in the "user manual” mode. The English language

References

materials are superficial and contain only a few dozen
console commands.

A detailed analysis of the environment revealed the
presence of two modules contained in the structure of the
CAD, which help the potential user of the system to
quickly construct the necessary GDB. Also fundamental
to the package is the ability to support the design and
analysis of visual models based on complex objects
consisting of a large set of graphic primitives.

In general, when writing this article, the goal was
achieved, which was to perform reengineering
(evolutionary improvement while maintaining the positive
qualities that are confirmed by the operation) of open-
source 3D design with inheritance of full functionality and
principles of operation.

After research, we can conclude: the powerful side
of the system is the extreme speed of visualization tools,
ray tracer and rendering. Compared to its counterparts,
one can claim another advantage of BRL-CAD, namely:
the visualization process is one of the fastest among the
existing.

Perspectives. The last advantage is the broad
prospects for the application of BRL-CAD in various
fields: military, industrial or educational applications,
such as design and analysis systems in the fields of
engineering, mechanical units, architectural structures,
molecular structures, etc.

The prospects for the study also include
reengineering: the BRL-CAD utility tool group, the CAD
graphics libraries, the command-and-use system, file
naming conventions, and geometry. Still need
improvement: simple-body creation processes, logical
operations, combined-body operations, rendering and ray
tracing.

The author wishes to express his gratitude to the
developer company of the BRL-CAD 3D modeling
software for the possibility of open use and testing of
source files, assemblies and systems, as well as for
support of cross-platform methodology.

1 Potemkin, A. V. (2002), 3D Solid Modeling [Trekhmernoe tverdotel'noe modelirovanie], Komp'yuter-Press, Moscow, 296 p.

2. Velykodniy, S. S., Tymofieieva, O. S., Zaitseva-Velykodna, S. S., Nyamtsu, K. Ye. (2018), "Comparative properties analysis of
open, free and commercial software” ["Porivnialnyi analiz vlastyvostei vidkrytoho, vilnoho ta komertsiinoho prohramnoho
zabezpechennia"], Information Technology And Computer Engineering, No. 1 (41), P. 21-27.

3. Velykodniy, S. S. (2014), "Methods of software systems reengineering" ["Metody reinzhynirynhu prohramnykh system "],
Instrumentation Technologies, Spec. No, P. 65-68.

4. Velykodniy, S. S. (2019), "Method of presenting the assessment for reengineering of software systems with the project
coefficients help" ["Metod predstavlennia otsinky reinzhynirynhu prohramnykh system za dopomohoiu proektnykh koefitsiientiv"],
Innovative Technologies and Scientific Solutions for Industries, No. 1 (7), P.34-42. DOI: https://doi.org/10.30837/2522-
9818.2019.7.034

5. Norenkov, I. P. (2000), Computer Aided Design [Avtomatizirovannoe proektirovanie], MGTU im. N. E. Baumana, Moscow,
188 p.

6. Li, Dzh., Uer, B. (2002), Three-dimensional graphics and animation. Ed. 2nd [Trekhmernaya grafika i animatsiya. lzd. 2-€],
Vil'yams, Moscow, 640 p.

7. Kontsevich, V. G. (2007), Solid Modeling Engineering Products in Autodesk Inventor [Tverdotel'noe modelirovanie
mashinostroitel'nykh izdeliy v Autodesk Inventor], DiaSoftYuP, DMK Press, Kiev, Moscow, 672 p.

8. Khern, D., Beyker, M. P. (2005), Computer Graphics And OpenGL Standard. Ed. 3rd [Komp'yuternaya grafika i standart
OpenGL. Izd. 3-e], Vil'yams, Moscow, 1168 p.

9. Nevlyudov, I. Sh., Velykodniy, S. S., Omarov, M. A. (2010), "Use Of CAD / CAM / CAE / CAPP In The Formation Of Control
Programs For CNC Machines" ["Ispol'zovanie CAD/CAM/CAE/CAPP pri formirovanii upravlyayushchikh programm dlya stankov s
ChPU"], Eastern European Journal of Enterprise Technologies, No. 2/2 (44), P. 37-44.

10. Endzhel, E. (2001), Interactive Computer Graphics. Introductory Course Based On OpenGL. Ed. 2nd [Interaktivnaya
komp'yuternaya grafika. Vvodnyy kurs na baze OpenGL. Izd. 2-¢], Vil'yams, Moscow, 592 p.

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2019. No. 3 (9)

11. Snuk, G. (2007), Real-Time 3D Landscapes In C ++ And DirectX 9. Ed. 2nd [3D-landshafty v real'nom vremeni na C++ i
DirectX 9. Izd. 2-e], Kudits-press, Moscow, 368 p.

12. Bondy, J. A., Murty, U. S. R. (2008), Graph Theory, Springer, San Francisco, 655 p. DOI: https://doi.org/10.1007/978-1-84628-
970-5

13. Velykodniy, S. S., Burlachenko, zZh. V., Zaitseva-Velykodna S. S. (2019), "Graphic databases reengineering in BRL-CAD open
source computer-aided design environment. Modeling of the structural part” ["Reinzhynirynh hrafichnykh baz danykh u
seredovyshchi vidkrytoi systemy avtomatyzovanoho proektuvannia BRL-CAD. Modeliuvannia strukturnoi chastyny"], Transactions
of Kremenchuk Mykhailo Ostrohradskyi National University, No. 3 (116), P. 130-139. DOI: 10.30929/1995-0519.2019.3.130-139

14. Jungnickel, D. (2013), Graphs, Networks and Algorithms. 4th Ed., Springer, Berlin, 677 p. DOI: https://doi.org/10.1007/978-3-
642-32278-5

15. Velykodniy, S. S., Burlachenko, Zh. V., Zaitseva-Velykodna S. S. (2019), "Graphic databases reengineering in BRL-CAD open
source computer-aided design environment. Modeling of the behavior part” ['Reinzhynirynh hrafichnykh baz danykh u seredovyshchi
vidkrytoi systemy avtomatyzovanoho proektuvannia BRL-CAD. Modeliuvannia povedinkovoi chastyny"], Transactions of
Kremenchuk Mykhailo Ostrohradskyi National University, No. 2 (115), P. 117-126. DOI: 10.30929/1995-0519.2019.2.117-126

16. Troelsen, E. (2011), C # 2010 Programming Language And .Net 4 Platform [Yazyk programmirovaniya C# 2010 i platforma
.NET 4], Vil'yams, Moscow, 1392 p.

17. Object Management Group (2013), Unified Modeling Language (OMG UML). Version 2.5, OMGroup, 831 p.

18. Weilkiens, T., Oestereich, B. (2006), UML 2 Certification Guide: Fundamental & Intermediate. Exams Morgan Kaufmann, The
MK/OMG Press, 320 p. ISBN: 0123735858

19. Babich, A. V. (2016), Introduction to UML [Vvedenie v UML], NOU INTUIT, Moscow, 209 p. ISBN: 978-5-94774-878-9

20. Samek, M. (2008), Practical UML Statecharts in C / C++: Event-Driven Programming for Embedded Systems Newnes. 2nd Ed.,
728 p. ISBN: 0750687061

21. Yang, H. (2005), Advances In UML And XML-based Software Evolution, Idea Group Publishing, 362 p.

Received 20.08.2019

Bioomocmi npo asmopis / Ceedenus 06 asmopax / About the Authors

Bemukonumii CranicmaB CepriiioBud — KaHIUIAT TEXHIYHMX HAyK, JOUEHT, OJeChKUN JepKaBHUI CKOJOTTYHHN
YHiBepcHuTeT, Tnpodecop Kadenpu aBTOMATH30BaHUX CHCTEM MOHITOPHMHTY HAaBKOJHIIHBOTO cepenoBumma, Opeca, YkpaiHa;
e-mail: velykodniy@gmail.com; ORCID: https://orcid.org/0000-0001-8590-7610.

Beauxonnsiii CtanuciaaB CepreeBuY — KaHAUJAT TEXHUUECKUX HAYK, TOLEHT, OJeCCKUil TOCYIapCTBEHHBIN AKOJIOTHYECKUA
YHHBEpCUTET, Ipodeccop Kadeapsl aBTOMAaTH3UPOBAHHBIX CHCTEM MOHUTOPHHTA OKpYkatomel cpenbl, Onecca, YkpanHa.

Velykodniy Stanislav — PhD (Computer Science), Associate Professor, Odessa State Environmental University, Professor of
the Department of Automated Environmental Monitoring Systems, Odessa, Ukraine.

PETHKWHIPUHT BIIKPAUTOI MPOTPAMHOI CUCTEMHW TPUBUMIPHOT' O
MOJEJIOBAHHSA BRL-CAD

Komm’roTepHa rpagika — akTyajibHa Taly3b NPOEKTYBAaHHS Ta 3aCTOCYBaHHS 3aCO0iB OOYMCIIIOBAJIBHHX CHCTEM, IO iHTEHCHBHO
po3BHBaIOThCA Yy OocTaHHiH dac. [IpeqMeT poOoTH — MpoeKTyBaHHS rpadigHoro iHTepdelcy kopuctyBada. Mera poOOTH — BUKOHATH
PEIHKUHIPHHT (€BOJIOIIHE YIOCKOHATICHHS 31 30€peKEHHSM MO3UTHBHUX SIKOCTEH, MIO MiATBEpPKEHI EKCILTyaTaIli€r0) BiIKPHTOL
MIPOTPAMHOI CHCTEMH TPUBUMIPHOTO MPOEKTYBAHHS 13 HACIIIyBaHHAM IMOBHOTO (pyHKIiOHANTY Ta mpuHOUMIIB podotn. BRL-CAD — e
crenianizoBaHa Kpoc-TUIaTOpMoBa CHCTEMa 3 BIAKPHUTUM KOIOM, IO SBISE cO00I0 MOTYkHY 3D cucreMy aBTOMAaTH30BaHOTO
MIPOEKTYBaHHs JUII MOJIENIOBaHHS 00 eMHuX Til. [IporpamHa cucTema BKIIIOUae B ceOe iIHTEPaKTUBHUH T€OMETPUYHHI PEmaKTop,
napajsienbHe TpacyBaHHsS IMPOMEHIB, PEHJEPHHT Ta TEOMETPUYHHIN aHali3. 3aBAaHHsI: y3araJbHUTH PE3yIbTaTH eKCIEPHUMEHTAIBHUX
JIOCIi/KEHb Ha DIBHI NpEICTaBICHHs KJaciB, KOMIIOHEHTIB Ta BapiaHTiB BHKOPHCTAaHHS, SKI HEOOXiZHO MOAATH 3a JOIOMOTOIO
yHidikoBanoi MoBu MozemoBaHHs — UML, i3 o6poOkoro Ta iHTepnperanicto pe3ynsraTiB Ha piBHi CASE-3aco0y; BHKOHaTH aHaIi3
NepeKyIaay BUXITHOTO KOy MepenpoekToBaHoro rpadiunoro intepdeiicy kopucryBaua BRL-CAD. Metoan. [Ipouec npoextyBaHHs
YH MepernpoeKTYBaHHS HOBHX MPOTPaMHHUX IPOIYKTiB € HeepekTuBHUM Oe3 BukopucranHs UML-meromomorii, ame mpm ii
JIOTPUMAHHI — MIBUJIKICTH PO3POOKH IiJBHINYETHCS y pasu. Y poOOTi, BHKOPUCTOBYeThCA MeToxoioriss UML 2.5 i3 BUKOpHCTaHHAM
CASE-incrpymenrapiro Enterprise Architect 14.0. Pe3ysabTaTu. OCHOBHHI aKI[eHT IIOCTaBJICHO HA TPHU JiarpaMu: KJIaciB, BapiaHTIiB
BHKOPHUCTAHHA Ta KOMIOHEHTIB. Ha mizfcTaBi 1ux miarpam, BiIOYBaeThCs TeHepallisl KoMy Ta IMojaiblia podoTa MporpaMicTiB, y TOU
Yac sIK iHII (OMOMIDKHI) JiiarpaMy PU3HAYCHO JUTS MOSICHEHHS eIKUX CKIaJHUX creudikaniil mpoeKTy, o BTIM He 3MEHIIye 1X
3HAUYIIICTh Y paMKax MPOeKTy. Y MOJAaHOMY JOCIIDKEHHI BUKOHAHO y3aralbHEHHs Pe3yNbTATiB eKCIIEPUMEHTAIBHUX JOCITiIKCHb;
IPOAHANI30BaHO Ta y3arallbHEHO pe3yNbTAaTH IMepeKIaay BHXiITHOTO KOIy, TOJOBHHUM 3 SIKUX CTAJI0 CKOPOUYESHHs MpPareMiCTKOCTi
CTBOPEHHSI BiIKPUTOTrO mporpaMHoro npoaykty Ha npuxiani BRL-CAD. BucnoBku. BRL-CAD € npuiiHATHOIO Y 3aCTOCYBaHHI JUist
JIOCBITYCHOTO MPOEKTYBaJIbHIKA, IPOTE IS TIOYATKIBIT a00 CTyJEHTa Mpolec ii 3aCTOCyBaHHS BHSIBUTHCS TyXe yckinagHeHuM. [Ipu
JIeTaJbHOMY aHalli3i cepeoBUINa OyJ0 BUSBICHO HASBHICTH ABOX MOJIYIIB, IO MICTATHCS Y CTPYKTYpI CHCTEMH, SKi JOMIOMArarTh
MOTEHIIIHHOMY KOPHCTYBaueBi HIBHAKO KOHCTPYIOBaTH Ta MOJENIOBATH. TaKoX (YHIAMEHTAJIHHOIO BIACTHBICTIO NMAKeTy MOXHA
Ha3BaTH 3JIaTHICTH MiATPUMYBATH KOHCTPYIOBAHHS Ta aHAI3 Bi3yaJIbHUX MOJEJIC Ha OCHOBI CKIIaTHUX 00'€KTIB, IO CKIAAIOTHCS 13
BenMKOro Habopy rpadiunux npumiteBiB. [loTyxHuit Oik cucTeMH — Il HaJg3BMYailHa MIBUAKICTH 3aco0iB Bi3yaumizarii,
TpacyBaJbHHKA MPOMEHIB Ta peHaepuHry. [Ticas mopiBHSHHS 3 aHAJOraMu, MOJKHA CTBEP/KYBATH, 1[0 MPOIIEC Bidyaui3alii € 0JHUM
i3 HAHIIBUIIMX Cepell ICHYIOUYHX.

Ki1i04oBi cjioBa: peiHXHHIPHHT; MporpamMHa CHCTeMa; KOMIT IoTepHa rpadika; TpuBuMipHe MozentoBanHs; aiarpama; CASE-
3acib; ki1ac.

http://www.springer.com/math/numbers/book/978-3-540-72779-8

ISSN 2522-9818 (print)
CyuacHuii cman HayKko8ux 00ciiodcenb ma mexHonoeitl 6 npomuciosocmi. 2019. Ne 3 (9) ISSN 2524-2296 (online)

PEMHXXUHUPUHI OTKPBITON MPOT'PAMMHOM CUCTEMbBI TPEXMEPHOI'O
MOJEJIUPOBAHUSA BRL-CAD

KommbrotepHas rpaduka — akTyanbHasi OTpacib MPOSKTUPOBAHMS U IPUMEHEHHUS CPEICTB BBIYMCIHMTEIBHBIX CHCTEM, HHTEHCHBHO
pa3BuBarommxcs B nocienuee spems. [IpeameT paboTs! — poekTupoBaHue rpaduueckoro naTepdeiica moiap3osarens. Lleas paboTer
— BBIIOJIHAT PEHH)KUHUPHUHT (IBOIOIMOHHOE YCOBEPIICHCTBOBAHHE C COXPAaHEHHEM ITOJIOXKUTENBHBIX KaueCTB, ITOITBEPKICHHBIMA
9KCIUTyaTalleii) OTKPBITOIl NMPOrpaMMHONW CHCTEMBI TPEXMEPHOTO INPOCKTUPOBAHMS C HACIEIOBaHHEM IOJHOTO (DyHKIHOHAma n
npuHIUnoB pabotsl. BRL-CAD — 310 crienuanu3upoBaHHasi KpoccIiiaTOpMeHHasi CHCTeMa C OTKPBITBIM KOJIOM, TIPECTaBIISIOIIas
co0ot0 MomHylo 3D cucreMy aBTOMaTH3MPOBaHHOTO NPOCKTHPOBAHMUS JUIS MOJICINPOBaHUs 00beMHBIX Tell. [IporpamMmHas cuctema
BKJIIOYAET B Ce0sl MHTEPAKTHBHBIH F€OMETPUYECKHI PEAAKTOP, MapaieIbHYI0 TPACCUPOBKH JIy4eil, PEHACPHHT M I'€OMETPUYECKUH
aHanmm3. 3aga4ym: 00OOIUTE pe3yNbTAaThl HKCIIEPUMEHTAIBHBIX HCCIEAOBAHUN Ha YPOBHE NPEACTABICHHS KJIACCOB, KOMIIOHEHTOB U
BapHaHTOB MCIOJIB30BaHMs, KOTOPEIE HEOOXOMMO NPEACTABUTH C MMOMOIIBI0O YHH(UIMPOBAHHOTO s13bIKa MojenupoBanus — UML, ¢
obOpaboTkolf M wWHTepmperanueil pe3ynpTaToB Ha ypoBHe CASE-cpencTBa; BEIIONHUTH aHANW3 IIEPEBOAA HCXOJHOTO KOAa
TIepenpoeKTHPOBAHHOTO Tpaduieckoro wuHTepdeiica noms3oBatenss BRL-CAD. Metoanl. [Ipomecc mNpoeKTHpOBaHHS —WIH
MEePENpPOCKTHPOBAHHUS HOBBIX ITPOIPAMMHBIX POAYKTOB sBisieTcs HeadekTBHBIM 6e3 ncnons3oBanus UML-MeTon010rHH, OIHAKO
IpU ee COOMIOACHHH — CKOpPOCTh pPa3pabOTKM TOBBILAeTCs B pasbl. B pabore ucmomesyercst Meromosorms UML 2.5 ¢
ucnonszoBanueM CASE-unctpymentapus Enterprise Architect 14.0. Pe3yapTaTbl. OCHOBHOI aKIIEHT IIOCTABJICH Ha TP JHATPAMMBI:
KJIaCCOB, BAPUAHTOB HCIIOJIb30BAaHUS U KOMIOHEHTOB. Ha OCHOBaHHMHM 3THX AMAarpamM, NPOMCXOAUT TeHEepalys KoJa U JajabHeas
paboTa HmpOrpaMMHCTOB, B TO BpeMsl Kak Jpyrue (BCIOMOTaTeNIbHBIC) OUarpaMMbl MpeIHa3HAuCHBl ISl OOBSCHEHUS HEKOTOPBIX
CJIOXKHBIX CTIelU(UKAIMN ITPOEKTa, OJHAKO 3TO HE YMEHbBIIAET MX 3HAUMMOCTh B paMKax IpoekTa. B mpemyaraeMoM uMccie10BaHUU
BBINIOJTHEHO 0000IIeHNE Pe3ybTaTOB SKCIIEPUMEHTAIBHBIX NCCIIEI0BaHNUN; POAHAIN3UPOBAHEl M 0000IIEHBI Pe3yNIbTaThl IIepeBoia
HCXOMHOTO KOJa, TJIAaBHBIM M3 KOTOPBIX CTAJ0 COKpAIleHHE TPYAOEMKOCTH CO3/aHUS OTKPHITOIO NPOTPAaMMHOTO IPOAYKTa Ha
npumepe BRL-CAD. BoiBoasl. BRL-CAD siBisieTcst nmpreMiIeMoil B MPUMEHEHHH [UTS OMBITHOTO MPOEKTUPOBIIHMKA, OIHAKO IS
HAYMHAIOLIET0 WM CTYICHTa Hpoliece € MPUMEHEHHs OKaXXETCsl OUCHb CIIOKHBIM. IIpH IeTalbHOM aHaM3e Cpebl ObLIO BBIIBICHO
HaJIM4YMEe JBYX MOJIYJECH, COIEpKalllUXCsi B CTPYKTYpE CHCTEMbI, KOTOPbIC MOMOTAIOT MOTEHIMAIBHOMY IOJIB30BATENI0 OBICTPO
KOHCTPYHPOBaTh W MozenupoBaTh. Tawke (yHIaMEHTAIbHBIM CBOWCTBOM IaKeTa MOXXKHO Ha3BaTh CIIOCOOHOCTH IOJJICPKUBATDH
KOHCTPYHPOBAHHMS U aHAIU3 BU3YaJbHBIX MOJENCH Ha OCHOBE CIIOXHBIX OOBEKTOB, COCTOSIINX M3 OONBIIOro Habopa rpadu4ecKux
NIPUMUTHBOB. MOIIIHAs CTOpPOHA CHCTEMBI — 3TO 4Ype3BbIYaliHas CKOPOCTb CPEACTB BU3yalM3allM{, TPACCHPOBINHMKA JIydeil W
pennepunra. ITocne cpaBHEHHs ¢ aHAJIOTaMH, MOXXHO YTBEPXKJIATh, YTO IPOIECC BU3yalIN3alUH SBISIETCS OJHUM M3 CaMbIX OBICTPBIX
CpelH CYIIECTBYIOIUX.

KnioueBble ciI0Ba: pEMH)KMHUPUHT; IPOrpaMMHas CHCTeMa; KOMIbBIOTepHas TIpaduka; TpeXMEpHOE MOJEINPOBaHNE;
nuarpamma; CASE-cpenctBo; kiacc.

bionioepaghiuni onucu / Bibliographic descriptions

Bemmkonnmii C. C. PeimxuHipuHT BigKpuTOl mporpamHoi cuctemu TpuBuMipHoro MonemoBanHs BRL-CAD. Cyuacnuii cman
Haykogux 0ocniodcenb ma mexnono2ii 6 npomuciogocmi. 2019. Ne 3(9). C.62-71. DOI: https://doi.org/10.30837/2522-
9818.2019.9.062.

Velykodniy, S. (2019), "Reengineering of open software system of 3D modeling BRL-CAD", Innovative Technologies and
Scientific Solutions for Industries, No. 3 (9), P. 62—71. DOI: https://doi.org/10.30837/2522-9818.2019.9.062.

