JMHAMIKA TA MILIHICTb MAIINH

UDC 53:002

NON-STATIONARY
RESPONSE

OF A CARBON
NANOTUBE-REINFORCED
COMPOSITE

CONICAL SHELL

Kostiantyn V. Avramov
kvavramov @ gmail.com
ORCID: 0000-0002-8740-693X

Borys V. Uspenskyi
Uspensky.kubes @ gmail.com
ORCID: 0000-0001-6360-7430

Nataliia H. Sakhno
natali.sahno @ gmail.com
ORCID: 0000-0003-4179-5316

Iryna V. Biblik
1.v.biblik @ gmail.com
ORCID: 0000-0002-8650-1134

A. Podgorny Institute of Mechanical
Engineering Problems of NASU
2/10, Pozharskyi St., Kharkiv, 61046, Ukraine

Introduction

DOI: https://doi.org/10.15407/pmach2020.02.021

This paper is devoted to the development of a method for the analysis of the
non-stationary deformation of a carbon nanotube-reinforced composite
shell under pulsed loading. The development of innovative manufacturing
technologies has led to the emergence of new materials that have high po-
tential for use in the aerospace industry. In particular, these include carbon
nanotube-reinforced materials, or so-called nanocomposites. These mate-
rials demonstrate high strength and rigidity in combination with low
weight, which is especially important when designing components of rocket
and aircraft structures: fairings, fuel tanks, engines. At the same time, the
behavior of structural elements under typical environmental influences
requires additional studies due to the anisotropic and functional-gradient
properties of materials. The determination of the mechanical properties of
a nanocomposite is a known difficulty due to its anisotropic nature. There
are various approaches to solving this problem. The simplest and at the
same time well-proven one is the modified mixing rule, which is used in the
paper. Equations of motion of the conical shell under the action of shock
loading are obtained. To derive the equations of motion of the shell, a high-
order theory is used that takes into account shifts and rotational inertia. To
analyze the non-stationary dynamics of the shell, its free vibrations are
analyzed. The analysis results are highly accurate compared to the finite
element calculation carried out in the ANSYS software suite. A method is
proposed for analyzing the dynamical response of the shell under the action
of impact loading, which is based on the eigenvibration analysis of struc-
tures. Time dependencies of adapter deformations are obtained for the
cases of actuation of two and four symmetrically arranged pyrodevices.
The results of the analysis of the non-stationary dynamics of the adapter
were compared with the finite element analysis results.

Keywords: conical shell, pulsed load, non-stationary process, nanocom-
posite material.

In recent decades, nanotechnology is increasingly penetrating the practice of designing and manufac-

turing engineering structures and processes. With the help of nanotechnology, new materials are created,
which include nanocomposites. The reinforcing elements of nanocomposites are carbon nanotubes, which
have Young's modulus and tensile strength several orders of magnitude higher than that of steel. The use of
these materials is especially relevant in the design of rocket and airframe structure components: fairings, fuel
tanks, power plants.

A number of studies have been carried out to determine the mechanical characteristics of nanocom-
posites. In [1], micromechanics methods are used to numerically simulate the effective elastic properties of
nanocomposites. In [2], these properties are determined by the finite element approach based on the contin-
uum mechanical model. In [3], a model is proposed by which the properties of nanocomposites are deter-
mined taking into account the interactions between atoms in a molecular model.

Experimental studies of the mechanical properties of nanocomposites are reflected in [4—7]. In [4], in
the course of compression experiments, it is shown that the yield strength of a rubber specimen increases
significantly — by a factor of two at a carbon nanotube volume fraction of 1% and four times, at that of 4%.
In [5], it is found that the Young's modulus of oriented nanocomposites can be five times higher than that of
the nanocomposites in which carbon nanotubes are randomly oriented. The authors calculate the Young's
modulus of a nanocomposite with a small error, using the modified mixing rule. In [6], a mixing rule is pro-
posed, differing significantly from that used in other similar works. The review article [7] presents various
micromechanical models for assessing the mechanical properties of nanocomposites.
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In a number of works, the statics and dynamics of carbon nanotube-reinforced composite shells are
studied based on their linear models. The statics and dynamics of cylindrical carbon nanotube-reinforced
composite shells are considered in [8—12]. Linear vibrations of carbon nanotube-reinforced composite plates
are studied in [13-15]. Free vibrations of functionally gradient double-curvature flat shells reinforced with
graphene nanoplates are studied in [16, 17]. A dynamic analysis of cylindrical composite shells reinforced
with single-walled carbon nanotubes under the action of shock loading is described in [18].

This paper describes a method for analyzing vibrations of a nanocomposite shell under the action of
shock loading. This process corresponds to the behavior of the rocket body after the adapter is jettisoned
with the help of pyrodevices.

Mechanical Properties of Nanocomposites

To determine the mechanical proper-
ties of r}anocomposites,' the mixipg rule is : : : : : : : o0 : : : o0 PP : PP
used, which has proven itself well in evaluat- | g 9 @ @ @ ® ® P 0000000
ing the properties of nanocomposites. Wecon- | o 0o 0o 0@ @ @ (X X ) (XX X X )
sider the nano-reinforced material in which | |0 00000 @ 0000000 ®
carbon nanotubes are placed along the shell un FG-X FG-0
generatrix. The main types of reinforcement ' YY Y Y Y X ®
(Fig. 1) suggest a linear change in the thick- 90000 o000
ness of the volume density of carbon nano- o000 00000
tubes in the material. So, with a UD reinforce- s 0000000
ment, the volume density of carbon nanotubes FG-V FG-A
in the material is constant; with a V reinforce- Fig. 1. Types of shell reinforcement with carbon nanotubes
ment, it is insignificant on the inner surface of in the transverse direction

the shell, and reaches its maximum on the outer one; with an X reinforcement, an equal maximum density of
carbon nanotubes is achieved on the outer and inner surfaces of the shell, and on the middle one it is zero.

Denote by V., the part of volume occupied by uniformly distributed carbon nanotubes. Then, for

each type of reinforcement, the part of volume occupied by carbon nanotubes, V (z), is described by the
following formulas [16, 19, 20]:
—for UD-CNT V- (2) = Veyr 5

2
— for FGV-CNT V. (z)= (1+ hz JVCNT ;

22)
— for FGA-CNT Vo, (z)= (1—7ZJVCNT ;

—for FGX-CNT Vi (Z ) 4]|/lZ|VCNT )

— for FGO-CNT V., (z)= 2(1 - %)VC*NT .

The mechanical characteristics of the functionally gradient composite material of the cylindrical
shell depend on the transverse coordinate z. They are estimated using the mixing rule as follows [19, 20]:

FONT ppm n,GS G
E —nV ENT 4V (J)E", E _ MNoLy 3G1p ’
11(1) UM CNT(Z) 11 m(Z) 22(1) VCNT( )E v ( )E CNT( )G Y, ( )Glcz‘NT

CNT ° G12 (Z)_

CNT l-hz( )

l-hz( )=V, CNT( )“'12 m( JTES Hzl( )= E“( ) ( )

p(z)=Veny (™" +V, (™. V,,(2) =1V, ().
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where EJM L ESYT,GSY are Young's moduli and the shear modulus of carbon nanotubes; WS, is the Pois-

son's ratio of carbon nanotubes; M,,M,,MN; are reinforcement efficiency parameters; E”,G" are Young's and

shear moduli; p“*",p™ are the carbon nanotube and matrix densities.

Since the shell material is functionally-gradient, shear will be taken into account in the design model
[21, 22]. In addition to the elastic constants presented above, it is necessary to determine the shear moduli.
Following article [16], they are defined as follows: Gl3(z)= G, (z); G, (z)= Gy, (z).

Hooke's law for the composite material of the shell has the form

Gxx _ Qll(Z) Q12(Z) gxx _ B _
{GSJ B {QZI(Z) sz(ZJLee} %o: = Oz (Z)Yez’ 0 =G (Z)Yﬂ’ Oy = Glz(Z)'Yxe’

- E(2) )= Ey(2) 7)= 1y (2)E,, (2)
Al e i s R vy (s v s M v v

where Y., Yo, are shear strains; €, €gg, Yo,» Yy» Yeo are elements of the strain tensor; G, ,0G, are shear

xz?

stresses; O, Ogg, O, are elements of the stress tensor.

Basic Equations of the Non-stationary Conical Shell Response

The non-stationary dynamics of the conical shell will be studied in a cur-
vilinear coordinate system (Fig. 2).

The x axis is directed along the generatrix of the median surface of the
conical shell. The ¢ axis describes the circumferential coordinate of the conical
shell. The circles of the median surface, whose planes are parallel to the base,
have a radius r: r= x-sinal. We denote the radius of curvature of this cone sur-
face along the circumference by R, = x- tg(o). The z axis is perpendicular to the

median surface and directed outward of the structure.

Since the conical shell under consideration is a nanocomposite one, shears
and inertia of rotation are taken into account. We use the high-order theory pre-
sented in [22], [23]. We introduce three projections of displacements. We denote
the projections of the displacements of shell points on the generatrix of the cone
by u,; the projection of displacements on the circumferential coordinate, by u,; the
projection on the normal to the median surface of the shell, by u,. Following [22], Fig. 2. A sketch
[23], the projections of displacements can be represented as follows: of the conical shell

u, = u(x,(p,t)+ z\yx(x, (p,t)+ zzex + z3yx ) Uy = [I+Ri}»(x, (p,t)+ z\uq,(x,(p,t)+ zzeq, + z3Yq, , U, = w(x,(p,t), (1)
®

where u,v,w are the projections of the displacements of the points of the median surface onto the generatrix,
circumferential coordinate, and normal to the median surface. The decomposition coefficients Gx,yx,e(p,'y(p

are unknown; they are derived from the boundary conditions

sz z=40.5h = T(PZ 7=40.5h =0 ’ (2)
where £ is the thickness of the shell. The shear stresses on the upper and lower surfaces of the shell are zero.
These boundary conditions can be rewritten with respect to the corresponding shear strains v,,,Y,, , which

satisfy the relations

)
yo= Qe Oy ST, 1O B ) 3)
0z Ox Oz 1+zR, (09 R,
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We introduce expansion (1) into relation (3) and take into account the result in the boundary condi-
tions (2). Then we derive the following relations for 8,,v,.6,.7,

4 (ow CLaw, L SRR R -Raw

3n*\ox ") % 2Rgroe 2R, * 6R:M® 'Y 6r W’R; 09 3R
Further, the problem of non-stationary structural vibrations will be solved in displacements with respect

to the five unknowns u(x, (p,t), v(x, 0, t), w(x, (p,t), \px(x, (p,t), Y, (x, (p,t) . To write the equations of motion of the

eX:O’ YX:_

structure, we use the assumed-modes method [24]. In order to use this method, it is necessary to obtain the ex-
pression for the potential and kinetic energy as a function of displacements. First of all, we derive the relations
that connect strains and displacement components. For this, we use the relations presented in [23]. We write
these relations for the conical shell. As a result, the elements of the strain tensor can be represented as follows:

€., =€+ z(kio) +2kV + zzk)(f)), Egp = €0 + z(k(f,o) + 2k + zzk(ff)),
Yx@ = qu),() + Z(k)(cg) + Zk)(fip) + sz)(«zp))’ sz = sz,O + Z(k)(c?) + Zk)(ci) + sz)(cz))’ (4)

Yo: = Youo + z(kéf;) + zk(f)lz) + zzkg)),

where €, €905 V20,00 V00 Yoz 0 » kio..z), ké)o..z)’ k)((?p”z), k}({g..z)’ ké(;..z) are differential expressions with respect to

the unknowns u(x,(p,t), v(x, (p,t), W(X, (P,l), \px(x, (P,l), \Vq,(x’ (PJ)-
We write the potential energy of the conical shell as follows [23], [25]:

[1= OaSJ-J.J‘{Qn (2)e2 +20;, (Z)Sq)(psxx +0n (Z)Sé(p +Gys (Z)Yiz +Gi3 (Z)Y)zcz +Gyy (Z)Y)Z«p }[1 + Ri]dzrdxd(p S
v

¢

where V is the volume occupied by the conical shell. We introduce expansions (4) into the potential energy
(5) and expand in powers of z. Then the potential energy can be represented in the following form:

5
[1=0,5[[rdxdg)_h, 6)
A Jj=0
. pY) ‘
where A is the region of the median surface of the conical shell; A, = Péo) . h; = Pj(’ )+ IJQ L.j=1,..5, E)(’S)
¢
are the quadratic forms of the expressions €, . €y, Y1005 Yxz.0> Vo0 k}({o..z)’ kg)“z), k)(cg“z), k)((g“z), ké(;._z) .
We write the kinetic energy of the conical shell as follows [23], [25]:
7=05[ o) + 42 + 42| 14— |dzrdxde, %
% R,
where 1, = L
dt
We introduce expansion (1) into the kinetic energy (7). Then it takes the following form:
5
T=05[rdxdo)"r,P,, ®)
A Jj=0

0,5h
where rp= Isz(z)dz;jz 0,1,...; F, 5 are the quadratic forms of the velocities u, v, w, ., \'p(p as well
—-0,5h

as expressions Y, , Y, , 0, .

24 ISSN 0131-2928. Journal of Mechanical Engineering, 2020, vol. 23, no. 2



JMHAMIKA TA MILIHICTb MAIINH

Consider the non-stationary dynamics of the structure due to the
actuation of pyrodevices. Note that there can be any number of such de-
vices. Further, we consider v of such devices. They are located on the up-
per section of the conical shell (Fig. 3). Their positions are determined by
the circumferential coordinates of the cone ¢ i j=1,...,v. The action of the

pyrodevices is described by the shock loading, which is represented as the
concentrated force

0= QOSIH(TJO<I<T, ©) A

0, t>T
. . . Fig. 3. Th ti hock load.
where T is the action time of the shock load. &  action of shock loads
on the shell

The parameter Q, is determined by a given pulse value. The concentrated forces Q are directed perpen-
dicular to the lower base of the cone. The virtual work from the action of all shock loads is derived as follows:

dA=— IF Sw(L,, .t d(p+jF8uL 0,7)do,

where F, = sin(o ZQosm( jﬁ((p (pj) = cos(a ZQosm( Tj ((p (pj) L, is the value of the longitu-

j=1
dinal coordinate X in the upper section of the truncated cone. Finally, we write the virtual work expression in
the form

8A = —sin(at) 0sm( jZSw(Ll Q.1 t)+cos(at) 0sm( jZSu(Ll Q.1 t). (10)

Further, we will consider the conical shell clamped from below (Fig. 2). On the clamped side, the
following boundary conditions are satisfied:

=0.

x= L2

Weer, = v|x=L2 = W|sz2 =Vilor, = Vo
Analysis of Eigenfrequencies and Eigenvibrations

The non-stationary response of the conical shell is expanded in a series of its eigenvibrations. To
analyze the eigenfrequencies and eigenvibrations of the conical shell, the Rayleigh-Ritz method [25, 26] is
used. The main unknowns of the problem are the displacements and rotation angles of the normal. We repre-
sent the eigenvibrations of the conical shell in the following form:

Cu | _Un (x)cos(n(p)_

v (x)sin (n(p)

w |=| W, (x)cos(no) |cos(wr), (11)
v, | | X,(x)cos(ng)
v, | (x)sin (ng) |

where o is the eigenfrequency of the structure; n is the number of waves in the circumferential direction. The
functions U, (x),V, (x), , W, (x), X,(x),Y,(x) are expanded in a series of trial functions as follows:

'() A
)

S

N+i

N
Wn(x) =D | Ay | 9:(x), (12)
Xn('x) = Ay
Yn (x) A4N+1
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where [A yeer As N] are the unknown parameters that are calculated as a result of applying the Rayleigh-Ritz
method.
To study cantilevered truncated cones as the trial functions ,(x), we choose:

Y, (x) = sin{(zl — lz)EtL(Lz _L]; — x)} . We substitute expansion (11) into the kinetic and potential energies (6, 7),
2 M

which leads to the following expressions:

T = o’sin*(07)T, T1=cos*(w7)I]. (13)
We use the principle of least action, on the basis of which we can write [27]
21/ ®
8 [(r-Tdr=o0. (14)
0

From expression (14), taking into account (12) and (13), we can find the eigenfrequencies and ei-
genvibrations of the shell.
Equations of Non-stationary Structural Responses

The eigenfrequencies ®, and eigenvibrations AY
The found relations are introduced into (12). The result is a set of eigenvibrations in the form
UV 0. v 0. w0, x P, v (x)

We expand the non-stationary dynamics of the structure under the action of shock loading (9) in a
series of eigenvibrations as follows:

are determined from the problem of eigenvalues.

N N, N
u=Y UV q,(0cos(ng) .  v=Y VI )gy, ,0sine).  w=Y W) gy, (1)cos(n,9).

j=1 j=1 j=1
N Ny
v, = > X0 gy, Ocos@), W, = > Y@ gy, . @)sinGn,), (15)
j=1 j=1

where (”1v-~”1v) is the set of wave numbers in the circumferential direction, which is determined by analyz-
ing the eigenfrequencies of the structure; (ql,...qw N*) is the vector of generalized coordinates that describes

the non-stationary structural response.
We introduce expansions (15) into the structure’s potential energy (6) and the kinetic energy (8). We
make the necessary integration. Then, as a result, we get

10N, 10N,
HZ 0.5 Zcikquk9 TZOSZmlkqlqk .
ik=1 k=1

From the virtual work expression (10), we find the generalized forces @, , corresponding to the gen-

eralized coordinate ¢, in the form

C(m, . e AN
Q,, = Q, cos(ar) s1n(?j U,(l )(Ll) Civ Quyini=—0psin() Sln(?JWn( )(Ll) G,

C;=2 cos(n;)). i=l....N..

j=1
Ordinary differential equations of non-stationary structural responses can be represented in the fol-
lowing matrix form:

MG+Cq=Q, (16)
where Q= in,...,Qlo N, } is the vector of generalized forces.

To study the linear dynamical system (16), a numerical integration of these equations of motion is used.
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Numerical Structural Dynamic Analysis

Consider the eigenfrequencies and eigenvibrations of the trun-
cated conical shell, which is shown in Fig. 4. The geometry of the cone
is described by the following parameters: L,;=0.225 m; L,=0.5 m;
h=5x10" m.

The eigenfrequencies were calculated both by the Rayleigh-Ritz
method and the finite element method, which is implemented in the
ANSYS software suite. The calculation results of the eigenfrequencies of
the truncated cone are presented in table 1. The first column of the table
shows the calculation number; the second one, the eigenfrequency num-
ber. The third column shows the number of the circumferential waves that
are observed during vibrations with the corresponding frequency. The
fourth column shows the number of the trial functions that are used in ex-
pansions (15). The fifth column shows the number of the nodes in the lon-
gitudinal direction of the conical shell, which are observed during vibra-
tions with the corresponding frequency. The sixth and seventh columns
show the eigenfrequencies obtained by the Rayleigh-Ritz method and the

0275m

Fig. 4. A sketch of the truncated
conical shell

finite element method. The eighth column shows the relative difference in the eigenfrequencies obtained by
the two methods. From the first four rows of the table, it follows that seven trial functions in expansions (15)

are enough to obtain eigenfrequencies with sufficient accuracy.

Table 1 presents the first twenty-sixth eigenfrequencies. It should be emphasized that for all eigenfre-
quencies, the results obtained by the Rayleigh-Ritz method and the finite element method (FEM) are close.

stationars}/u;)(iZcesset:lihat 0222; Table 1. Eigenfrequencies of the cantilever truncated conical shell
in the conical shell (Fig.3), Ca;lll;l;lsgron Elgeﬁiﬁ%‘;ﬁncy n\:ning N|I| o,Hz cfEII\{/Iz §
with the parameters. presented 1 1 3 T 1T 533711 539.67 | 00110
above, under the action of two 2 2 4 | 7] 1| 55468 | 562.28 | 0.0130
shock loads @ (10), which 3 3 2 |7 1| 64883 655.11 ] 0.0095
hav.e such circumferential co- 4 4 5 7111 67946 | 69151 | 0.0170
ordinates: ¢,=0; ¢,=n. These 5 5 6 | 7] 1] 856.46| 872.32 | 0.0180
shock loads are located on two 6 6 1 711 95370 | 958.00 | 0.0045
opposite sides of the conical 7 7 7 7 |1 ]1046.63 | 1064.80 | 0.0170
shell perpendicular to its base. 8 8 4 7121124773 | 1217.40 | 0.0250
The duration of this shock load 9 9 5 7| 2| 1284.93 | 1261.20 | 0.0180
7=5-10" secs and 00=3454 N. 10 10 8 71 1| 1239.57 | 1263.30 | 0.0180
Constant reinforcement over 11 11 3 7 | 2] 1298.05 | 1271.70 | 0.0200
the thickness of the UD nano- 12 12 6 712 | 1412.07 | 1406.00 | 0.0040
Composite was considered. 13 13 2 7| 2 | 1456.26 | 1442.50 | 0.0090
For FEM Calculations’ 14 14 9 7 1 1442.42 1474.90 | 0.0200
the commercial ANSYS soft- 15 15 7 712163196 | 1651.90 | 0.0120
ware suite was used. The 16 1 10 [ 7 [ 1]1660.02 | 1702.50 | 0.0250
forms of shell displacements at | ——2 it T3 [ 1895 00| 194970 | 0.0280
Py Ol,gtiisl(;resegfvenaﬁi 19 19 8 | 7] 2192109 | 1962.80 | 0.0210
Fig. 5. As can be seen in the 20 20 12 711 |2140.20 | 2208.10 | 0.0300
figlire‘ in the non-stationary 21 21 9 7| 2| 2237.00 | 2293.80 | 0.0240
vibrations of the shell, there | —33 = 51713 |25 | 44350 | oo0so
are several eigenvibrations. 24 24 13| 7| 1| 2400.92 | 2480.20 | 0.0300
25 25 3 71 3 |2510.20 | 2485.20 | 0.0100
26 26 6 7| 3| 2514.33 | 2496.60 | 0.0070
ISSN 0131-2928. Ilpobaemu mawunobyoysanns. 2020. T. 23. Ne 2 27




DYNAMICS AND STRENGTH OF MACHINES

A: Transient Structural
Total Deformation

Type: Total Deformation
unit: m

Time: 1.425e-003
03.04.2020 12:34

o 0.0017249 Max

0.0015332
0.0013416
0.0011499

D 0.00095827
0.00076661

= 0.000574%6
0.00038331

I 0.00019165
0 Min

a

A: Transient Structural
Total Deformation

Type: Total Deformation
unit: m

Time: 1.085e-003
03.04.2020 12:38

m 0.00085535 Max

0.00076031
0.00066527
0.00057023

D 0.00047519
0.00038015

| 0.00028512
0.00019008

I 9.5038e-5
0 Min

0.500 (m}) 0.000 0.300
I I
0.150 0.450

0.600 (m)

Fig. 5. The form of displacements of the conical shell at times:
a—1=1.425107 secs; b — =1.085-1073 secs

Consider the case of two pyrodevices located at diametrically opposite points of the median surface
of the truncated cone. Then ¢,=0; ¢,=n. For the numerical modeling of non-stationary dynamic processes,
the above-derived linear dynamic model was used. The dynamical system (16) was numerically integrated
using the Runge-Kutta method with a variable pitch.

Convergence of non-stationary
dynamic processes in the conical struc-
ture was studied, which is described by
the dynamic system (16). In this case,
the calculations took into account a
different number of terms in expansion
(15). Three dynamic models were built.
The first model has 10 degrees of free-
dom in expansion (15). In this case, the
solutions are expanded in a series of
eigenvibrations 5 and 8 (Table 1). The
second dynamic model has 30 degrees
of freedom. In this case, solution (15) is
expanded in a series of six eigenvibra-
tions with numbers 5; 8; 10; 12; 13; 16
(Table 1). The third dynamic model has
60 degrees of freedom. In this case,
solution (15) is expanded in a series of
12 eigenvibrations with numbers 2; 3;
5; 8; 10; 12; 13; 16; 19; 20; 22; 26 (Ta-
ble 1). The results of the analysis of the
dynamic processes described by these
three models are presented in Fig. 6.

Fig. 6 shows the results of the
numerical integration of the dynamical
system with a different number of de-
grees of freedom (the solid bold line,
with 10 degrees of freedom; the solid
thin line, with 30 degrees of freedom;
the dashed line, with 60 degrees

28

G.00E-04

wi0.5(L+L5),0.5m1), m
4.D0E-04

2.00E-04

t, sec
0.00E+00

0.00E+00 ¥2.00E-03

-2.00E-04
-4, 00E-04

6.00E-04

Fig. 6. Transient convergence analysis

BO0E-04  w(0.5(L+L2),0.5mt). m s

A.00E-04
2.00E-04
0.00E+00
0.00E+00
-2.00E-04
-1.00E-04

-6.00E-04

-8.00E-04 oo

Fig. 7. Comparison of the obtained results with the simulation results in
the ANSYS software suite
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of freedom). So, the three non-

. . . 0 Wil S5(L,+1L-).0.75mt). m
stationary dynamic processes are sig- 1.00E-03 ( (L1 2). .

nificantly different. Compare the ob- B.00E-04 \
tained results with the simulation re- 6.00E-04
sults in the ANSYS software suite. 4.00E-04

The results of this comparison are pre-
sented in Fig. 7.

2 .00E-04
t. sec

. R 0.0DE+00
In this figure, the solid line 0.00E+00 5. 00E-04 1 00E- 150603 , 2.00E-03
shows the results of the numerical in- | %9594
tegration of the dynamical system (16) -4.00E-04 .,
with 60 degrees of freedom, and the -6.00E-04 LA
dashed one shows the results obtained 8 00E-04 g

n . the Comme'rc%al ANSYS software Fig. 8. Comparison of the obtained results with the simulation results
suite. The y-axis in this figure shows in the ANSYS software suite

the transversal displacements w at the point x=0.5(L,+L,); ¢=0.5t. The dynamic process obtained in the
ANSYS software suite and the dynamic process obtained according to model 3 are close. Therefore, we assume
that the third model adequately describes the dynamic process.

The transverse displacements w at another point, x=0.5(L+L,); ¢=0.75m, obtained on the basis of
model 3, were compared with the simulation results in the ANSYS software suite. The results of this com-
parison are shown in Fig. 8, where the solid line shows the results of integration according to model 3, and
the dashed one shows the results of calculation in the ANSYS software suite. So, the results obtained by
these two methods are close.

Conclusions

A method for the analysis of the transient processes arising in a carbon nanotube-reinforced compos-
ite truncated conical shell under the influence of shock loading is proposed. The results are compared with
the finite element simulation results. The method allows us to evaluate the influence of shock loading on the
shell with the required accuracy.
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JMHAMIKA TA MILIHICTb MAIINH

HecTamnioHapHuii BiAryxk KOHiYHOI KOMIIO3UTHOI 000JI0HKH, IIOCHJIEHOT ByTJIelIeBUMH HAHOTPYOKAMHU
K. B. ABpamoB, b. B. Ycnencoskuii, H. I'. Caxno, 1. B. bioaik

Iacturyt npobiem MammHoOyryBanHs iM. A. M. Ilinropaoro HAH Ykpainu,
61046, Ykpaina, M. Xapkis, Byin. [Toxxapcekoro, 2/10

Cmamms npuceésiuena po3pooyi memooy ananizy HeCmayioHapHo2o 0eoOpMYy8aHH HAHOKOMNOZUMHOT 00010~
HKU Ni0 8NAUBOM IMNYIbCHO2O HABAHMAdICEHHS. Po36umox iHHO8ayiliHuXx 6UPOOHUYUX MeEXHON02I NPUBIE 00 BUHUKHEH-
HSL HOBUX Mamepianis, AKi Maiomov 8UCOKULL NOMEHYIAN 0/l BUKOPUCTANHS 8 AePOKOCMIYHINL NPOMUCI08OCHI. [0 HUX,
30KpeMa, Hanexcamsv Mamepian, aKi apmosano gyereyesumu nanompyoxamu (BHT) — mak 36ani nanoxomnosumu. Lfi
mMamepianu 0eMOHCMPYIOMb BUCOKY MIYHICIb MA HCOPCMKICTNG 8 NOEOHAHHI 3 MANIOI MACOI0, WO € HAO36UHAUHO aK-
MYAnbHUM Ni0 4ac NPOEKMYBAHHS e1eMEeHMI8 PaKemHux ma aiayiinux KOHCMPYKYIN: 0OMIiuHUKI8, NAIUGHUX OAKIE,
osuzyHis. Boonouac, nosedinka enemenmie KOHCMpYKYill 30 XapaKxmepHux 6nausie 308HiUHb020 cepedosuya nompedye
000amK08020 OOCNIONCEHHS GHACHIOOK AHI30MPONHUX MA (DYHKYIOHANLHO-ZPAOIEHMHUX GIACTNUGOCHEl Mamepiaiy.
Busnauenns mexaniunux enacmugocmeii HAHOKOMNO3UMHO20 MAMeEPIany BUKIUKAE OESKY CKIAOHICMb 6HACIIOOK 11020
HAHOKOMNO3UmMHOI npupoou. Icnyromo pizHi nioxoou 0o poss’szanus yiei npobremu. Moougixosane npasuio 3miuty-
6anns € HatNpOCMiuM i npu YboMy maxum, wjo dobpe cebe sapexomendysano. Hozo euxopucmano 6 po6omi. Ompu-
MAHO PIBHAHHA PYXY KOHIYHOI 060IOHKU NI 6NAUBOM YOAPHO20 HABaHmMAadCcenHA. /s U0y pigHsHb PYXY 000NOHKU
BUKOPUCMAHO MEOPII0 BUCOKO20 NOPAOKY, AKA 6PAXOBYE 3CY8U Mma iHepyilo obepmanna. /[na ananizy necmayionaproi
OUHAMIKU 0DOJOHKU NPOBEOEHO aHANI3 il GINbHUX KOAUBAHb. Pe3ynomamu ananizy marome 6UCOKY MOYHICMb Y NOPIG-
HAHHI 30 CKiHYEHHO-eeMeHMHUM PO3PAXYHKOM, KUl npoeedero 6 npozpamuomy komniekci ANSYS. 3anpononosano
Memoo amanizy OUHAMIYHO20 BIO2YKY O0DONOHKU NiO GNAUBOM YOAPHO2O HABAHMAICEHHS, AKUU OA3YEMbCs HA AHANI3L
BAACHUX (PopM Koaueanb Koucmpykyii. Ompumano uacosi 3anrexchocmi oegpopmayii adanmepa 011 unaoKie cnpayio-
8aHHA 080X MA YOMUPLOX niponpucmpois. Pezynemamu ananisy Hecmayionapuoi ounamiku adanmepa 6y10 NOPi6HAHO
3 pe3yabmamamit CKiHueHHO-eleMeHMHO20 AHANI3Y.

Kniouogi cnosa: xoniuna obononxa, iMnynscHe HABANMAICEHHSA, HECMAYIOHAPHUL npoyec, HAHOKOMNO3UMHULL
mamepian.
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