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KurouoBi ciioBa: mpusumipni ckinuenmi THERMOELAST'C'TY PROBLEM

eleMeHmuy, 6dl, GMYJKd, NOJis nepeMi-
WeHb ma memnepamyp, 3a3op, Hamse. Buknadeno memoouxy nobyoosu ymourenoi CKiHUeHHO-eleMeHmHoi Mame-
Mamuunoi Mooeni 30IpHUX KOHCMPYKYIU MUNy «8ai» — «BMYIKA», WO Md-
10Mb 3HAUHE PO3NOBCIOONCEHHS 8 eHePOMAUHOOYOYeanHi. 3 suKopucman-
HAM PO3POONIEHUX MPUBUMIPHUX CKIHYEHHUX eleMeHMI8 D036 s3aH0 KOHmMA-
KIMHY MEPMORPYICHY 3a0ayy 01 0aHo2o muny 3’ €onanv. Ompumano noie
PO3ROOINY nepemiuyenb HA MOPYesUx KOHMAKMYIOUUX NOGePXHIX ANy md
6MYJIKU, A MAKONC NOJAE PO3NOOLLY meMnepamyp 6 3’ €OHAHHI.

Introduction

The working process of attached solid constructions like shaft and sleeve subassemblies that are used
in modern turbines is steadily influenced by various mechanical and thermal effects of high intense. This fact
causes a connection between changes of the matched solid bodies mechanical contact and a heat flow
through their surfaces. Especially important this correlation is for details of gas turbine engines due to their
extremely hard working process.

It should be noticed that the main conditions of contact conjugation between the details in such types
of subassemblies always change sharply for every type of mechanism’s working state [1]. Firstly, the shaft
and sleeve subassemblies are fitted with a gap or negative allowances before the start of working process.
This means that each pair of contacting surfaces has its own definite conjugation conditions. But during the
working process the conjugation conditions can rapidly change. Therefore we can observe the changes of
heat flow parameters on the shaft and sleeve contacting surfaces [2]. So a mathematical model used for such
subassemblies thermoelasticity problem solution needs to take into consideration all these changes on the
details contacting surfaces that also cause the variations of temperature and displacement fields on the
aforementioned surfaces.

There are two main approaches that are used for the solution of contact problems for deformable sol-
ids by a finite elements method (FEM). The main idea of the first approach is to use the contact layer of def-
inite thermal conductivity, that is located among the solid bodies contacting surfaces. The finite elements
model of the contact layer is based on finite elements similar to the elements of the solid bodies. But the
thermo conductivity features of the layer elements are different from the features of solid bodies’ elements
[1]. This approach is rather useful, but its application to the thermoelasticity problems solution of real as-
semblies and subassemblies is inconvenient, because it’s extremely hard to calculate the layer’s deformation
caused by the thermal gradient on the contacting surfaces. The second main approach is to use the definite
function, that distinctly determines the dependences between the heat flux and displacements of finite ele-
ments nodes located on the contacting surfaces [3—6]. The foregoing problems solution could be obtained
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only in the case of several conditions fulfillment. The first one is the condition of details’ junction unpenetra-
tion; the second one is the condition of normal and tangential forces equality for each pair of contacting fi-
nite elements nodes [4-7].

The main aim of this article is to develop more correct mathematical model based on three dimen-
sional finite elements, that could be used for shaft and sleeve subassemblies thermoelasticity problems solu-
tion.

Formulation of the problem

The investigated subassembly is located in the right rectangular Cartesian coordinate system xyz with
the beginning at the shaft’s butt centre O. Z axis is normal to the shaft axis of rotation; x matches the shaft
axis of rotation. The whole coordinate system is rotating with constant angular velocity together with shaft
and sleeve subassembly (Fig. 1).

The considered mechanical deformable system en-
ergy state could be described by Lagrange variation prin-
ciple. Thus

dL=0
L=I-W’
where L — Lagrange function; I/ — potential energy of sys-
tem’s resistance to deformation; W — the work of external
forces.
After FEM approximation the main equation of the
mechanical system balance (1) is transformed to

ey

Ké=F, 2
where K — global stiffness matrix of finite elements model; | Fig. 1. The shaft and sleeve subassembly in the
& — vector of finite elements nodes generalized displace- Cartesian coordinate system

ment; F — vector of external forces.
The temperature state of the solid body caused by the stationary heat transfer could be described by
next equation [5]

9°T 9°T 9°T
}\' 2 + 2 + 2
ox~ dy~ oz
where 7 — body temperature, K; A — thermal conductivity coefficient W/m-K; x, y, z — Cartesian coordinates

of the solid body; Q — internal source of heat.
For solution of the equation (3) next boundary conditions should be applied

4?ZQ+§ZQ+§ZQJ+K@—Z)+q:O, 4)

J+Q=0, 3)

ox dy oz

where T, — ambient temperature, K; /,, [;, [, — direction cosines of the normal vector to the surface; g — heat
flow density, W/m.
Dependencies (3) and (4) form functional (5). Its minimization gives us solution of the temperature

problem
¢:lj A (B_TJZ + B_T 2 +(8—Tj2 -20T dV+I{qT+lh(T—T )z}dS. ©)
29 ox dy 0z < 2 ’

After the FEM approximation of (5) we could receive the mutual dependences of the aforementioned
assembly heat balance

KTT=Q ’ (6)

where Kt — global matrix of the finite elements model thermal conductivity; T — vector of temperatures lo-
cated in the nodes of finite elements; Q — vector of external heat load.
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Therefore, for the solution of shaft and sleeve subassemblies
thermoelasticity problem we need to solve the set of matrix equations,
that is formed by the usage of dependencies (2) and (6).

Solution of the problem

For more correct solution of the aforementioned problem we
must design the special three-dimensional finite element of hexahe-
dron type (Fig. 2). It has eight nodes with five degrees of freedom in
each node. Such type of finite elements allows to provide FEM sam-
pling of solid bodies which form is fairly familiar to the details, form-
ing the researched structure. That is why the usage of mathematical
model formed on base of such finite elements gives an opportunity to
solve the thermoelasticity problem of shaft and sleeve subassemblies Fig. 2. Three-dimentional finite
more correctly [8]. element of hexahedron type

Transfer from the global Cartesian coordinate system xyz of
the mechanical system to the finite element’s local coordinate system {né should be described by the de-
pendencies

X Vi 3
= = R =T La= 2, )
g Vs g

where (x, y, z) — global Cartesian coordinates of the element; (x1,X,...,X8; Y1,Y2,..-,Ys; Z1,22,---,Zg) — Cartesian
coordinates of the element’s nodes; N; — finite element’s shape functions.

Shape functions for the developed finite element are presented by the dependences (8). Functional
inequalities should be noticed: (—1<&<1;-1<{<1;-1<n<1). Then

Ny = -n)=8)1-0); M = (-n)1+8)1-);

Ny = ()i g)i-0): Ny = (em)i-8)i-0)s ®
Ny = (=n)1=8)1+0)s Ny = (-n)i+E)1+0):

Ny =m0 0): N ==+ O

The displacement of finite elements nodes towards the xyz directions could be obtained by solution
of the dependencies (7) and (8). Thus

8

8}

N, 00 Ng 0 0]
8=|/0 N, 0 - 0 N, OF:l,(e=1,2,...,n), 9)

0 0 N, 0 0 Ng||8

W

8

where 8¢ — vector of the e-st finite element generalized displacement; §;, 612, 613 — generalized displace-

ments of the finite element node 1 towards the xyz directions; n — quantity of the finite elements taken into
consideration.

Functions of temperature (7°) for the e-st finite element of the developed three-dimentional finite el-
ements model could be obtained by means of the dependencies

44 ISSN 0131-2928. Ilpo6a. mawunobyoysanns, 2017, T. 20, Ne 2



JUHAMIKA TA MIITHICTb MAIIIMH

T°=) NT,.(i=12,,.,8),

i=1

where T; — temperatures in the nodes of the finite element.

(10)

It should also be noticed that for the solution of linear algebraic equations systems (7-10) the nu-
merical method of Kholetcski is used. The procedure of matrix reordering is also used to make global ma-
trixes more compact. For the storage of global matrixes in the computer random access memory the

Sherman’s compact scheme is suitable.

Main results and their analysis

For the mathematical model adequacy and calculation algorithm efficiency verification the fields of
shaft and sleeve subassembly temperatures and displacements are calculated. All calculations are realized
with the usage of ANSYS program complex. In the researched subassembly the shaft’s diameter is
d = 120h7 mm; shaft’s material is heat-resistant steel 20X3HM®A. The internal diameter of the sleeve is
D = 120M8; sleeve’s material — structural steel 30X. Shaft rotation frequency is 1000 revolutions per minute.

Thermal conductivity coefficient A = 500 W/m-K.

The sector of shaft and sleeve subassembly finite elements model is shown on the Figure 3.

The front surfaces of both details forming the
subassembly are axially fixed. Wherein there is a gap
between the shaft and sleeve front surfaces. Its value
is near 0,01 mm. Between the shaft and sleeve radial
surfaces there is a negative allowance, which value is
0,01 mm too. On the front surfaces of both details the
boundary conditions of the first kind used for the
thermal problem are given. In the initial state both
parts of subassembly have the temperature of 293 K.
Then the shaft front surface is heated up to 373 K.

On the Figures4 and 5 the fields of dis-
placement and temperature in the specified shaft and
sleeve subassembly are shown.

According to the fig. 4 we have to take into
consideration that on the shaft and sleeve front sur-
faces the conjugation conditions have been changed

293 K

A aaag

Fig. 3. Sector of shaft and sleeve subassembly
of finite elements model

from the gap to the negative allowance. Such changes could be explained by the influence of the heat flow,
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Fig. 4. The field of displacement in the place of
shaft and sleeve front surfaces contact

that causes heat extension of the contacting surfaces. These processes are described by the Fick’s law [5].
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Fig. 5. The field of temperatures in the shaft
and sleeve subassembly t

The field of temperatures in the shaft and sleeve subassembly is shown on the Fig. 5. It could be ob-
served that it is practically homogeneous and does not have sharp gradients. This fact could be explained by
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the change of the conjugation conditions from gap to negative allowance, caused by the influence of contact
surfaces thermal deformation. So the absence of the air gap between the front surfaces of shaft and sleeve
caused the absence of sharp temperature gradients in the places of their fitting.

Conclusions

The new more correct mathematical model that could be used for the shaft and sleeve thermoelastic-
ity problems solution has been successfully created. This model is based on the three-dimentional finite ele-
ments of hexagon type usage. The fields of displacement and temperatures on the details contacting surfaces
have also been obtained. It has also been established that the conjugation conditions in such type of subas-
semblies are changed from the gap to negative allowance type due to the heat extension of material. On the
base of this mathematical model the thermal stress-strained state of such structures, widely used in marine
engine building, could also be investigated.
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KarouoBi caoBa: cmpuneepna naacmuna,

Kpy206uii 0meip, Cull 34enieHns 8 36 3Kax, Hocniooicyemucs nl'()Kpl'anZEHa cmpunzepamu. nPYICHA i30mp0mfa niac-
Kowmakm Gepezie mpiwgun, Kowmaxmui na- | MuHd, wo J’wae Kpy2osuii Omeip, 3 AK02o BUX005IMb NPAMONIHIUHI Mpi-
npyoicents. wuny 31 38's3KaMU Midc bepezamu. Po3ensiHymo 6unaoox 4acmkogozo
3akpumms mpiwun. s 6usHauyeHHs Napamempis, wo Xapaxmepusy-
10Mb 3aKPUMMs MPiWuH, OMPUMAHO CUHZYTAPHE THmespanbHe PIGHAH-
H5l, SIKe 3a OONOMO20I0 npoyedypu anreebpaizayii 36edene 00 CKIHUeHHOT
Heninitnoi aneebpaiunoi cucmemu. Po3g’sa3youu areebpaiuny cucmemy
MemoooM NOCHIO06HUX HAOIUMNCECHb, 3HAUOCHI CUMU 34enaeHHs 6
38’A3Kax, KOHMAKMHI HANPYHCEHHS U PO3MIP KOHMAKMHUX 30H MPIUUH.

BBeaenne
ToHKHE MIACTHHBI, UMEIOUTUE OTBEPCTUS, SIBISIOTCS IIUPOKO PACIPOCTPAHEHHBIM AJIEMEHTOM KOH-
cTpykuuii. IlockonbKy OTBEpCTHE CO3/1a€T MOBHIMICHHYIO KOHIEHTPALMIO HAMPSKEHUN B IUIACTHHE, TPE/-
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