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AEROELASTIC BEHAVIOUR OF
TURBINE BLADE ROW IN 3D
VISCOUS FLOW

Hagedeno pesynomamu uucenvnozo auanisy aeponpysicHoi
NOBEOIHKU  GIOPYIOUO20 ONAMKO0B020 GIHYA MYypOIHHO20
cmynems 8 MPUBUMIDHOMY NOmMOYi 6’33K020 2azy 3
VPAXYBAHHAM — HEPIGHOMIDHO20 — PO3NOOLLY — MUCKY 6
OKPYJUICHOMY Hanpsami 3a jaonamkoeum @inyem. Yucenvruil
MEmoO  IPYHMYEMbCSL HA  PO36 SI3aHHI 36 ’A3aHOI  3a0aui
HeCmayionapHoi  aepOOUHAMIKU Ma  NPYICHUX — KOIUBAHD
JIONAMOK 6 HeCmayiOHAPHOMY NPOCHOPOBOMY NOMOYL 243y

uyepes JONAMKO8UL 6iH€‘I4b OCMAHHbOCO CMYNEHs 0Cb0B8oI

mypoinu. Hasedenuii memoo 0038015€ NPOSHO3Y8AMU
AMALIMYOHO-YACMOMHULL  CREKMp  KOAUBAHL  JONAMOK Y
nomoyi 2aszy, GKUOHAIOYU SUMYUIEHI mMad  Ccamo30yOHi
KOMuGaHHs ((hnamep 4y agmoxOIUBANHS).

KurouoBi ciioBa: aeponpyoicna nosedinka, 6 ’sizkuil
NnOMiK, I0ONAMKOBUIL 8iHelYb, AGMOKOIUBAHHS, 36 S3AHA
3a0aua, HeCmayioHapHe HABAHMAICEHHSL.

Introduction

The necessity to simulate complex and off-design modes of turbo-machinery flows requires the use
of Navier-Stokes equations to overcome the limitations connected with the non-viscous mode [1].

In the present study, the 3D Reynolds-averaged Navier-Stokes equations (RANS), coupled with
modified Baldwin-Lomax algebraic eddy viscosity turbulence model, is applied to calculate 3D unsteady
viscous flow through the oscillating blade row [2].

The approach is based on the solution of the coupled aerodynamic-structure problem for the 3D flow
through the turbine blade row in which both fluid and dynamic equations are integrated simultaneously in
time, thus providing the correct formulation of the coupled problem, as the blade oscillations and loads act-
ing on the blades are part of the solution [1, 3 - 7].

The paper presents the numerical results of the turbine blade row aeroelastic characteristics and aero-
damping coefficients under the given harmonic and coupled blade oscillations, taking into consideration the 1°
natural mode at different inter-blade phase angles of blade oscillations (IBPA = 0 deg; + 90 deg; 180 deg.).

The calculation results showed the stable aerodamping of oscillations at different shift phase angles
of blade oscillations.

Problem formulation

A 3D unsteady flow of viscous compressible gas through an isolated turbine blade row of oscillating
blades is considered. The turbine blade row is as annular cascade consisting of 53 blades. The problem of gas
flow through the turbine blade row is based on the assumption that blade oscillations are performed with a
constant inter-blade phase angle (IBPA). The flow from blade to blade is assumed to be aperiodic as the cal-
culated domain includes the number of blades depending on IBPA.

In this work, the blade motion is considered with the use of a modal approach, in which the blade
motion is assumed to be the linear superposition of the natural modes of blade oscillations with modal coef-
ficients changing in accordance with the given harmonic law

u,(xt)= > U} g, )

i=1

;= qu-sin[vaH( i-1)6; 1.
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where {Ui(x)} —is the displacement vector corresponding to the i natural mode; gi(t) is the modal coeffi-
cient corresponding to the i oscillation mode for the j blade; qoi is the dimensional factor; 6; is the phase
angle.

3D viscous gas transonic flow is considered to be in the physical domain including the blade row ro-
tating with a constant angular velocity and is described by unsteady 3D Reynolds-averaged Navier-Stokes
equations, presented in the form of integral conservation laws

%iu dQ+£|f-ﬁdc=.c[ﬁ-ﬁdG. (1)

Values F and R, symbolic vectors of non-viscous and viscous flows in a Cartesian system of coor-
dinates for the hexahedral finite volume with the normal to the lateral surfacefi(a;, §;,y;) (i=1,3), are pre-
sented as follows:

(If-ﬁ)z(Fl, F. F3) ; (ﬁ'ﬁ):(Rl’ R, R3);

p(Ulal +0,B; + U3Yl) P(Ulaz +0,B, + UsYz)
pY, (‘)10‘1 +0,P; + UaYl)"' poy pL; (010, + U, + UsYz)"‘ pa,
R =| pUy (0104 + 0B +37;)+ PPy |5 Fp = po, (010, +0,B, + 047, J+ DB, |
pL3 (Ulal +0,B; + 03V1)+ PY. p L3 (Ulaz +0,B, + UsY2)+ PY,
(h + p)(Ulal +V0,P; + UsYl) (h + p)(Ulaz +0,B, + UsYz)

P(Ulaa +0,P5 + UsYa)
P Uy (01015 +V,B5 + VY3 )+ PoLg
Fy =| poy (03015 +0oB5 +Vgy3)+ PBs |
P L3 (01015 + LBy +V373) + PY3
(h + p)(Ulas +0,B5 + UsYs)

0 0
rxxalJeryBlJerZyl T, Oy +rxy[32 + 7,75
R, =| tyx04 + rWBl +T,Y1 |5 Ry = T0p + rWBZ +1,72 |
T,,0 + szBl +1,7 T,,0, + szBz +7,,Y5
Byoy + BBy +B,71 By, +B,B, +B,v2
0

Ty O3 + TxyBB + T V3
RS = TnyLS + TyyBS + TyzY3 .
TZXOLB + szBB + T2Y3
Byaz +ByBs +B,v3

Here p is pressure, p is density, t is tangential stress, and v, ,v,, v, are velocity components.

The calculated domain includes all the blades on the whole annulus of the inlet and outlet domains
and is divided into the finite number of linear hexahedral elements. These elements are assumed to cover the
whole computational domain. Subdivision of the domain into the hexahedral elements makes it possible to
use indices i, j, k.

A 3D grid consists of a sequence of 2D grids that are stacked together in the radial direction (from
hub to tip). The 2D grids at each radial location are similar and each of them is divided into different seg-

ments. Each of the segments includes a blade and has a spread in the circumferential direction, which is
equal to the blade pitch. In turn, each of the segments is discretized using a hybrid H-O grid. The meridional
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section of the calculated domain is shown in Fig. 1. The root, 1.8+
middle, and peripheral sections of the blade, as well as the 2D |x (m) |
hybrid H-O grids for these sections are presented in Fig. 2. 16
The calculations were performed using a structural |
hybrid H-O grid consisting of 210,960 cells in each channel, 14
including the moving O-grid consisting of 165,600 cells. |
The geometrical and gas-dynamic parameters for each 12
channel are described in a Cartesian system of coordinates x, v, z, |
fixed rigidly with the static (in equilibrium) position of each 10
blade. Axis x is in the radial direction of a blade, axis z is oriented '
along the axis of the blade rotation, and axis y corresponds to the ]
blade’s circumferential direction, so that axes x, y, z form a right- 08
handed coordinate system (Fig. 2). |
The system of equations is integrated with the Godunov- | %©
Kolgan difference scheme of the second-order of accuracy with 02
respect to the spatial coordinates of the moving grid.
The unsteady effects on the blade row were assumed to

Fig 1. Meridional section of difference grid

1
z(m)

be caused by the rotor blade rotation in the unsteady flow and blade oscillations under the influence of unsteady
aerodynamic loads. The formulation of the boundary conditions at the channel inlet and outlet is based on the

one-dimensional theory of characteristics.
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Fig. 2. Difference grid:
a) — root sections; b) — middle sections; c) — peripheral sections
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Generally, if the axial velocity is subsonic, the complete system of the boundary conditions can be
presented:
— before the blade row, or at its inlet, as

2
T-Toluyk ARGk amaloykrorbyk o220
— behind the blade row, or at its outlet, as
p=npx, y);dp—azdp:O; dul—(mzr—Zmuz)dtzo ,

du,+200, dt=0; d| v, +—22 |=0.
-1

Here To, Po are the total temperature and pressure in the absolute coordinate system, a, v are the flow
angles in the tangential and meridional directions at the blade row inlet; p is the static pressure at the blade
row outlet.

The discrete form of equations (1) is built for an arbitrary space deforming difference grid as

1

oAt [3U n+lgn+1 _4UnQn +Un—1Qn—l]+ [ (_U W, + Fl - Rl)c] i+1 _[ (_U W, + I:l - Rl)G] it

"‘[(_UWn+F2_R2)G]j+1_[(_uwn+F2_R2)G] it

+[(_an+F3_R3)G]k+1_[(_U Wn+F3_R3)G]k +HnQn =0.

Here the lower and upper indices correspond to the 'old' and 'new' sells, f = {p, pv, E} is a symbolical

vector of conservative variables, F1, F2, F3 are the flows of conservative variables through lateral faces, o and
W, are the square and normal velocity of a lateral face centre. The gas-dynamic parameters on the lateral faces
are defined from the solution to the Riemann problem of breakdown of an arbitrary discontinuity.

The dynamical model of a vibrating blade is described by the matrix equation

[ Jia (x, )+ [C T (x, )+ [K Hu (x, 1)) =[F ], @

where [M], [C] and [K] are matrices of mass, mechanical damping, and stiffness of a blade; {u (x, t)} is the
blade displacement; [F] is the vector of unsteady aerodynamic loads.
Using the modal approach

{u(xt) HU (I alt) %iﬂui(X)}qi(t),

where Uj(x) is the blade displacement vector by i-mode; qi(t) is a modal coefficient of i-mode, and, taking
into account the orthogonality of natural modes, matrix equation (2) is reduced to a system of ordinary dif-
ferential equations relative to modal coefficients of natural modes

G (£} 2065 (1) + of 0 ()= (2)- ©)
Here hj is the mechanical damping coefficient of i-mode; w; is the natural frequency of i-mode; A; is

the modal force corresponding to the blade displacement by i-mode, calculated in each iteration in response
to the pressure distribution along the surface of a blade

X _Lj pU,-n°do
i_W,

Having defined the modal coefficients from the system (3), we receive the displacement and velocity
of a blade as
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u(x,)=>_U; ()a; (1),
U(xt) =) U; (x)G; (1)

The block diagram for calculating n — iterations in an aeroelastic model can be presented as

NN

‘ aerg rdgﬁfélrglc %

E_, H structure problem ‘

‘ .fn-1| ‘ HH(X,{), l}n(x}t)

‘ aerodynamic H E, Hstructure problem ‘

problem

| r | |un+1(x,f) s -’9,,+,(x,f)

Numerical analysis

The numerical investigation was performed for a turbine rotor blade row consisting of 53 blades .
The boundary conditions at inlet and outlet were accepted as follows:
— the total pressure in an absolute system of coordinates Py = 37840+38670 Pa, (Fig. 3);
— the total temperature in an absolute system Ty = 348 °K;
— flow angles in an absolute system of coordinates in the radial and circumferential directions were given;
— the static pressure at the blade row outlet P, = 1041010830 Pa (Fig. 3).
The graphs of the total pressure in an absolute system of coordinates (Po), in a relative rotating sys-
tem (Pow) and of the static pressure at the blade row outlet are shown in Fig. 3.
In Fig. 4 is shown the static pressure distribution at the blade row outlet in the circumferential direc-
tion. The curve on Fig. 4, a corresponds to the pressure distribution in the root section behind the blade row,
in Fig. 4, b —in the middle section, and in Fig. 4, ¢ — in the peripheral section.
The aerodynamic calculations of gas flow through the rotating blade row under the given law of

harmonic blade oscillations is performed.

All the blades perform harmonic oscillations by the given harmonic law with a constant inter-blade

phase angle (IBPA):

0ij = Gio -Sin[2mv; t+(j —1)3],

where g is @ modal coefficient ; i — the number of the
natural mode; j — the blade number; gio — the amplitude
of oscillations for the i —natural mode; vi — the natural
frequency of i-mode; & — inter-blade phase angle
(IBPA) of adjacent blades.

In calculations, only one natural mode with frequency
v1 = 120 Hz is taken into consideration.

The calculations were performed for harmonic
blade oscillations at inter-blade phase angles
IBPA = 0 deg, + 90 deg, 180 deg.

The aerodynamic stability of the coupled sys-
tem 'gas flow-blade row' without taking into considera-
tion the mechanical damping is defined by the aerody-
namic damping coefficient, which is equal to the per-
formance coefficient W adopted with a minus sign, per-
formed by the aerodynamic load, acting on the blades,
during the period of oscillations
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Fig. 4. Static pressure distribution behind blade row in circumferential direction
a) — root section; b) — middle section; c) — peripheral section

D=—W=—1/jV|j(F-G+ M -)dtdl, 4)

where F is the aerodynamic load vector, M - the aerodynamic moment; | — the blade profile length; © - the
linear velocity vector of the profile ; @ - the angular rotation velocity vector.
Taking into consideration the harmonic law of blade oscillations and periodical changes of the aerodynamic
load from formula (4) we can obtain the expression for the aerodynamic damping coefficient

D =-F;h;sina.— Mgy, sin B 5)
where Fo, Mo are the amplitudes of the aerodynamic force and aerodynamic moment; ho, o are the ampli-
tudes of bending and torsional oscillations; a, B are the shift phase angles of force and moment relative to the
blade bending and torsion.

It can be seen from expression (5) that if the aerodynamic force and moment signs coincide with the
sign of the profile displacement and torsion, then the performance coefficient is positive (W >0; D <0). In
this case, the energy of the main gas flow is supplied to the oscillating blade. If the aerodynamic force and
moment signs are opposite to the sign of the profile displacement and torsion, then the performance coeffi-
cient is negative (W < 0; D > 0). In this case, the oscillating blade energy is dispersed in the main gas flow.

The minus sign of the performance coefficient (D > 0) corresponds to aerodamping, whereas the plus
sign of the performance coefficient (D < 0) corresponds to self-excitation.
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Fig. 5. Aerodamping coefficient versus blade length
(the 1% mode, IBPA =0 deg)
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Fig. 6. Aerodamping coefficient versus blade length
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Fig. 8. Aerodamping coefficient versus blade length

(the 1%t mode, IBPA = +90 deg)

The energy exchange between the gas flow
and the oscillating blade is depicted in Figs. 5 — 9.
Figs. 5 —8 present the graphs of the aerodamping
coefficient D along the blade length at different val-
ues of IBPA = 0 deg; + 90 deg; 180 deg.

The average value of the aerodamping coef-
ficient in dependence upon the IBPA is shown in
Fig. 9. We observe that the aerodamping is realized
under all values of the IBPA. The minimum value of
aerodamping occurs at IBPA = +90 deg.

Starting from some moment the blade dis-
placement is defined by the unsteady forces acting
on the blade, which, in its turn, depend upon the
blade oscillations. We receive the coupled oscilla-
tions which depend upon the energy exchange be-
tween unsteady flow and oscillating blades.

In Figs. 10 — 12 are shown the blade periph-
eral section displacement in a circumferential direc-

0.8

0.6

0.4

0.2

0.0

| /1N

| / L\

-180 -90 o 90 180

IBPA (deg)

Fig.9. Average value of aerodamping coefficient
versus IBPA (the 1% mode)
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tion (Fig. 10), in the axial direction (Fig. 11), and the rotation angle relative to the gravity center (Fig. 12) for
IBPA =0 deg. In Figs. 10, a — 12, a are presented the graphs of displacement during the 10 periods of cou-
pled oscillations, in Figs. 10, b — 12, b are presented the graphs of the amplitude-frequency spectrum of
blade oscillations. As it follows from the graphs the blade oscillations are damped.

In Figs. 13 — 21 are presented the graphs of aerodynamic loads (circumferential force, axial force
and aerodynamic moment) acting on the root, middle and peripheral blade layers for IBPA =0 deg during
the 10 periods of oscillations (Fig. 13, a — 21, a) and the amplitude-frequency spectrum (Fig. 13, b — 21, b).
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9.5 A @
I i
=
-10.0 /\ ,\ A £ |
-10.5 \/ |
'11.0 | \/ \/ \j v |
115 : : : ‘ ‘ 0.00 |||I|| |‘I|.... . .
0.00000 0.01674 0.03348 0.05022 0.06696 0.08370 0 200 400 800 800 1000
t (sec) Frequency (Hz)
a) b)
Fig.10. Peripheral section displacement in circumferential direction (1 mode, IBPA = 0 deg):
a) — displacement during the 10 periods; b) — amplitude-frequency spectrum
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a) b)

Fig. 11. Peripheral section displacement in axial direction (1% mode, IBPA=0 deg):
a) — displacement during the 10 periods; b) — amplitude-frequency spectrum
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Fig. 12. Peripheral section rotation (1% mode, IBPA = 0 deg):
a) — rotation during the 10 periods; b) — amplitude-frequency spectrum
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Fig. 13. Circumferential force acting on turbine rotor blade root layer (1% mode, IBPA =0 deg):
a) — circumferential force during the 10 periods of coupled oscillations; b) — amplitude-frequency spectrum
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Fig. 14. Circumferential force acting on turbine rotor blade middle layer (1% mode, IBPA = 0 deg):
a) — circumferential force during the 10 periods of coupled oscillations; b) — amplitude-frequency spectrum
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Fig. 15. Circumferential force acting on turbine rotor blade peripheral layer (1% mode, IBPA = 0 deg):
a) — circumferential force during the 10 periods of coupled oscillations; b) — amplitude-frequency spectrum
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Fig. 16. Axial force acting on turbine rotor blade root layer (1% mode, IBPA =0 deg):
a) — axial force during the 10 periods of coupled oscillations; b) — amplitude-frequency spectrum
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Fig. 17. Axial force acting on turbine rotor blade middle layer (1% mode, IBPA = 0 deg):
a) — axial force during the 10 periods of coupled oscillations ; b) — amplitude-frequency spectrum
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Fig. 18. Axial force acting on turbine rotor blade peripheral layer (1% mode, IBPA = 0 deg):
a) — axial force during the 10 periods of coupled oscillations; b) — amplitude-frequency spectrum
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Fig. 19. Aerodynamic moment acting on turbine rotor blade root layer (1% mode, IBPA =0 deg):
a) — aerodynamic moment during the 10 periods of coupled oscillations; b) — amplitude-frequency spectrum
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Fig. 20. The aerodynamic moment acting on turbine rotor blade mid layer (1% mode, IBPA = 0 deg):
a) —aerodynamic moment during the 10 periods of coupled oscillations; b)—amplitude-frequency spectrum
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Fig. 21. Aerodynamic moment acting on turbine rotor blade peripheral layer (1% mode, IBPA = 0 deg):
a) — aerodynamic moment during the 10 periods of coupled oscillations; b) — amplitude-frequency spectrum

Conclusion

The numerical method for integrating the 3D Reynolds-averaged Navier-Stokes (RANS) equations
with the modified Baldwin and Lomax algebraic turbulence eddy viscosity model is applied to calculate 3D
unsteady viscous flow through a steam turbine rotor blade row.

The graphs of blade displacement and the aerodynamic loads acting on the blade for coupled oscilla-
tions at IBPA = 0 deg.

The proposed numerical method can be applied to predict the aeroelastic behaviour of the last stages
of the rotor blade rows for axial steam and gas turbines and compressors [1, 3-7].
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