[MPUKIIAAHASI MATEMATUKA

A. Pankratov, D. Sc. VK 519.85
o omanova, D. S¢. LAYOUT PROBLEMS FOR ARC OBJECTS
. Kotelevskiy

IN CONVEX DOMAINS

Pozenanymo onmumizayitiny 3a0auy ynakoeku O00SiIbHUX 00’ €Kmig,
obmedcenux dyeamu Kin ma GiOpi3KAMU NPAMUX 6 ONYKI 001acmi.
. Hobyodosano mamemamuyny mooenv y 6uenadi 3adaui Heougheperyi-
Kharkov, Ukraine, H08aHOT ONMUMIZAYLL, MHOJNCUHA Peanizayill AKOI NOKPUSAE WUPOKULL
e-mail: impankratov@mail.ru KIAC HAYKOBUX i NPUKIAOHUX 3A0aY 2COMEMPUUHO20 NPOEKMYEANHA.

Institute for Mechanical Engineering
Problems of the National Academy of
Sciences of Ukraine,

Po3pobneno memooonozito po3e’saszanns 3a0a4 ynaKosKu 3 ypaxyeaH-
HAM TeXHON02IUHUX 00Medcelb (MIHIMANbHO OOnyCmuMi GiOCMAHi,
30HU 3a00POHU, MOJICTUBICIb HEenepePEHUX MPAHCAYI ma 0bepmats
00°ckmig). 3anponoHoGaHo 2eHepamop NPocmopy po3e’a3Kie ma 6u-
piwysay (solver) onsa asmomamuunozo po3e’sizanns NLP-3a0au po3-
2NAHYMO20 KIAC).

KurouoBi cioBa: 3adaua ynaxosku, 008inbHi

00’ exmu, Henepepeni 0bepmanms, OONYCmuMmi
siocmarni, phi-gynxyii, cenepamop npocmopy
PO38’A3Ki6, 8UPIULY8aY, HeNIHIliIHA ONMUMI3A-

yis.

Introduction

The layout problem is a part of computational geometry that has rich applications in garment indus-
try, sheet metal cutting, furniture making, shoe manufacturing, glass industry shipbuilding industry, etc. The
common task in these areas is to arrange a set of shapes of specified shapes and sizes within a given sheet
(strip) of material (textile, wood, metal, glass etc.) [1, 2]. To minimize waste one wants to arrange shapes as
close to each other as possible.

The problems are NP-hard [3], and as a result solution methodologies predominantly utilize heuris-
tics and nearly all practical algorithms deal with shapes which are approximated by polygons (see tutorials
[4, 5] and references therein). The most popular and most frequently cited tool in the modern literature on the
Cutting and Packing is the No-Fit Polygon, it is designed to work for polygonal objects without rotations. A
notable exception being [6-9], which allows circular shapes, but they cannot be freely rotated. Tools of pack-
ing of rotated polygons is considered in [10, 11]. Paper [12] is mainly focused on presenting and discussing
efficient tools and representations to tackle the geometric layer of layout algorithms that capture the needs of
the real-world applications of irregular packing problems. In [13] an extended local search algorithm (ELS)
for the irregular strip packing problem is discussed. Objects are approximated by polygons and can be free
rotated. It adopts two neighborhoods, swapping two given polygons in a placement and placing one polygon
into a new position. The local search algorithm is used to minimize the overlap on the basis of the neighbor-
hoods mentioned above and the unconstrained nonlinear programming model is adopted to further minimize
the overlap during the search process. Moreover, the tabu search algorithm is used to avoid local minima,
and a compact algorithm is presented to improve the result. The results of standard test instances indicate
that when compared with other existing algorithms, the presented algorithm does not only show some signs
of competitive power but also updates several best known results.

Due to the extreme complexity of the analytical description of the relationship between geometric
objects, bounded by circular arcs and lines segments, only a few papers devoted to placement of arbitrary
shaped objects.

We present the layout problems in a formal mathematical manner. In the paper we deal with objects
of very general shape and we characterize their arrangements by means of special phi-functions [14—16]. As
a convex domain Q we consider a nonempty intersection of finite number of convex polygons and circles (in
particular: a rectangle, a convex polygon and a circle).

The concept the phi-functions is a highly convenient for practical solution of the layout problem. In
particular, we take advantage of phi-functions to develop more efficient algorithms.

Our principal goal is to present here a generator of mathematical models of layout problems using
the phi-function technique and demonstrate practical benefits of our algorithms and NLP-solver for non-
smooth layout problems.

We consider layout problems in the following basic formulation:
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Basic layout problem. Place a set of objects T, i € {1, 2, ..., N} = Iy within a convex domain Q of
variable metrical characteristics p, so that the given restrictions on the placement of the objects are fulfilled
and the area of Q reaches the minimal value.

We assume, that each item 7; is two-dimensional phi-object [14] (as a model of real objects), bound-
ed by line segments and circular arcs (see appendix A for details of definition of placement objects). We al-
low here free rotations and translations of objects. The restrictions include: containment of objects into a
container, non-overlapping of objects, given minimal allowable distances between objects, prohibited areas,
rotation constraints, and other specific technological restrictions (e. g. a given allowable ranges of rotation
angles).

A multiplicity of shapes of T; = R* as well as a variety of restrictions creates a wide spectrum of sub-
sequent problems of the basic layout problem. Our intention is to present each of the subsequent problems as
a nonlinear programming problem. To this aim we provide a generation of a solution space for the class of
problems based on phi-functions technique. Using the mathematical model generator we develop efficient
optimisation algorithm for solving layout problems.

Mathematical model and its properties

We assume that any placement object 7 (an object which has to be placed into a container)
considered here, is a two-dimensional phi-object, bounded by line segments, convex and concave circular
arcs [17]. The location and orientation of a placement object T is defined by a variable vector of its
placement parameters ur = (x7, yr, 07). The translation of object T by vector vy{xr, yr) € R?* and the rotation of
T  (with respect  to its reference  point) by angle 0r s defined by
T(v;,0;)={te R*:t= v+ M (GT)tO,‘v’tO e T°}, where T° denotes the non-translated and non-rotated object
T, M(0;) is rotation matrix.

We assume here that placement objects have fixed sizes (metrical characteristics).

Let u = (p, uy, us, ..., uy) € R° is a vector of variables, where (u;, u,, ..., uy) is a vector of variable
placement parameters (motion vector) u; = (x;, y;, 0;)) = (v;, 0;) of T, i € Iy, R° is the arithmetic Euclidean
space of o-dimension, (x;, y;) € R? is a translation vector and 6 is a rotation parameter of 7.

Mathematical model of the basic layout problem may have the form:

mink(x), s.t.ue WcR°, €}
W={ueR°:®_ >0, 20,9, >0,t=12,..,Ai=12,..,N,t =1,2...,M}, Q)

where K(u) is an area of Q;
function ®_ is a phi-function & (see e.g. [9]) for describing non-overlapping constraint

intA () intB = @ of objects A and B, or adjusted phi-function o (see e.g. [9]) for describing distance con-
straint dist(A, B) > p (int(A®C(p)) N intB = &), here dist(A, B) = rgibIEle (a,b), d(a, b) is the Euclidean dis-

tance between points a and b, p is a given minimal allowable distance between objects A and B. Here C(p)is
a circle of radius p, int(e)is the interior of object (®) [18], @ is the symbol of Minkovski sum,
A=0,5N(N - 1);

function CIDZ is a phi-function ®*° for describing containment constraint A € Q < intA 1 Q" = &,

Q" = RAintQ, or adjusted phi-function @ for describing distance constraint between objects A and Q',
i. e. dist(A, Q) > p (A®C(p) C B < intA N (B ®C(p)) = &), where p is a given minimal allowable distance
between objects A and Q
¢0,20,t=1,2,...,M,is a system of additional restrictions on values of components of vector u (e. g.
a given ranges of translation variables or rotation angles) if any, provided that each function @, is smooth.
We would remind the reader that phi-functions are continuous and everywhere defined functions
which allow us to describe analytically relations between two arbitrary shaped phi-objects A and B in such a

way: a) ®*>0 if intANintB=, b) ®** =0 if intANintB=@ and frANfrB= D, ¢) ®** <0 if in-
tA () intB # @. Here ®** means phi-functions for phi-objects A and B, fr(®)means the frontier of object fr(e).
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By definition an adjusted phi-function is an everywhere defined continuous function D" of objects
A and B, such as: a) ®*% >0, if dist(4, B) > p, b) ®*¥ =0, if dist(4, B) = p, ¢) ®** <0, if dist(4, B) < p.
In particular, we have dist(A, B) =2 p & O >0.

We emphasize that each phi-function (or adjusted phi-function) for a pair of 2D phi-objects is radi-
cal-free piecewise continuously differentiable function (see e. g. [16]), and defined in terms of operations of
maximum or/and minimum of smooth functions.

In [15] has been proved that objects A and B made by line segments and circular arcs can be always
presented as a finite union of basic objects. We refer the reader to the paper for details of the definition of set
R of basic objects and the algorithm of decomposition of arbitrary shaped objects by basic ones.

Let objects A= UAi and B = j@l B ; be given, A;, B € R. As it is known [14, 15], phi-function for
i=1 =
the pair of objects A and B has the form
& =min{®@y,i=1,....,n4j=1, ..., ng}. (3)
Here ®; is a phi-function for a pair of basic objects A; and B;. We further call the phi-function as a
basic phi-function. We present relation (3) as follows
& = min{®;, k=1, ..., ny ng). 4)
where @, is a basic phi-function.
Using (4) let us introduce the following function

Y(u)=min{®_,1=12,..A,®,,i=12,..N,Q, t=12...M}, 6)
which we call an arrangement function. This function is piecewise continuously differentiable function and
depends on all variables (p, u;, u,, ..., uy) of problem (1)-(2). We note that Y(«) > 0 if and only if CI>'T >0 for

allt=1,2,...,A,and ®, >0 foralli=1,2,..., Nand ¢, >0, forall t=1,2, ..., M.
Let us denote by &, k=1,2,...nk=1.2,..,n, all basic phi-functions in (5)

N-1 N N N-1 N
n= Z Zni n; +Zni , where Z Zni -n; 18 the number of all basic phi-functions for non-overlapping
i=1 j=i+l i=1 i=l j=i+l
N
constraints; Zni is the number of all basic phi-functions for containment constraints. Here #; is the number
i=1
of basic objects forming composed object T; and n; is the number of basic objects forming composed object
T,.
Then relation (5) can be defined as

Y(u) =min{P, k=1,...,n,¢Q,t=1,2, ..., M}, (6)
Now (2) may be presented in the equivalent form:
W={ue R°:Y(u)=0]}, (7

where function Y'(«) has form (6).

Let us consider general characteristics of problem (1)—(2).

1) Due to phi-functions (adjusted phi-functions) the solution space W given by (7) can be represented
as

w=Jw,, ®)

where W, = {u e R°: Yy(u) >0},

Y, =min{f,,iel}, flelf}, )
hereafter {f} notes a family of continuously differentiable functions; inequality Y, > 0 is equivalent to a sys-
tem of inequalities f/ >0, f'e{f},ie I.In(8)m<m’, N is the upper estimation of .
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2) Optimisation problem (1)—(2) is NP-hard nolinear programming problem with nonsmooth func-
tions

3) The solution space W has a complicated structure: it is, in general, a disconnected set, each con-
nected component of W is multiconnected, the frontier of W is made of nonlinear surfaces containing valleys,
ravines, etc.

4) Based on (8), problem (1)—(2) can be reduced to the following optimisation problem:

K ) = min{Kuy),.... K1, ),....K(uy) }, (10)
where
K(u,)= min k), s=12,.m<n’. (1)
ueW,cR°

Clearly, the global solution can be obtained and proved by inspecting and exactly solving all of the
subproblems defined in (11). Subproblems (11) are in general nonlinear programming problems and they
may be solved by standard techniques (e. g. interior point method, feasible direction method) of local
optimisation.

Our goal is to create a generator of solution space W defined by (7), which results in an automatic
generation of solution subregion W, for subproblems (11),s=1,2, ..., M.

To this aim we transform functionY, which is defined by (5) to equivalent formula

Y(u) = max{Y,, s=1,2, ....m}, (12)

where Y is given by (9).
Such transformation is always possible. It follows from algebra of logic formulas. We offer here a
way of construction of function (12) based on, so called, solution tree.

Solution tree

We desire to describe the solution space W defined by (7) using, so called, solution tree 3", such that
each terminal node v; of the tree corresponds to inequality Y, >0, s = 1, 2, ..., 1. Here function Y| is defined
by (9).

Inequality tree (I-tree)

Let F be a piecewise continuously differentiable function and formed by operations of maximum and
minimum of functions from {f}. We introduce, so-called, inequality tree (hereafter I-tree) for describing ine-
quality F' = 0.

We construct I-tree in the following manner. Let V10 be the root node of 3 associated with F > 0; v,lC
be k-th node of /-th level of 3,1=0, 1, ..., L. We associate with node v,l( of I-tree 3 inequality F,f >0 (for
the sake of simplicity, we further say, simply F!). Each function F! may take two forms:
F'= max{F;, j =1,...,N.} or F' =min{F;, j =1,..,N;}. We say that v/ is an additive node if it corre-
sponds to F.', and v, is a multiplicative node if it corresponds to F;'. Node v, is a terminal if: 1) v, is a

multiplicative one and 2) all functions ij, j=L..,.N ,lc, belong to {f}. If v,l( is not a terminal node, then

F,= sz . j=L..,N ,i, where N, is the number of child nodes of (I + 1)-th level of 3 generating by node

J g
v
Let us consider examples of constructing I-tree 3 for two functions
F) = min{max{f;, /}, min{f, f1}, max{fs, fs}}, and

Fy = max{max{fy, 2}, min{f;, fa}, max{fs, fc}}
where f; € {f}, i€ L.
We form the I-trees for F; 2 0 and F, > 0 as follows.
We set root node of each I-tree: F** = F, is a multiplicative node for F, >0 (Fig. 1, a) and F"° = F,

is an additive node for F, > 0 (Fig. 2, a) respectively.
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The first level of both I-trees is the same and contains three nodes: F,"' =max{f,,f,} is an additive,
F,' =min{ f,, f,} is a multiplicative, F;' =max{f;, f,} is an additive.

The second level of both I-trees is the same and contains five nodes: F} =f,, F5 =f,,
F2-12 = Fz.l =min{ f3, f4}, F3.12 =fs» F3.22 =fe -

Each node of the level is a multiplicative.
I-trees 3, and 3, associated with F; > 0 and F, > 0 are given in Fig. 1, a and Fig. 2, a.

Transformation of I-tree 3 into I-tree 3
Our aim now to transform multi-level I-tree 3 associated with F > 0 into the two-level I-tree 3 as-

sociated with F° > 0, where
F*=max{F',...F ,...F'}, F'=min{f/,ie 1}, flelfy.
Terminal nodes of I-tree § have to correspond to a system of inequalities f ]’ 20, iel;, f j’ e{f}.

We denote the number of inequality systems with smooth functions generated by root node v/ by n° =m,.

Each node v; per se may be considered as a root node of some sub-tree 3 of I-tree 3.

We derive the number of inequality systems of 3/ with smooth functions generated by node v, in
the form:

N
N, =Y Mg if v is additive node for =1, ..., L— 1, (13)
j=1
N
e =[G if vi is multiplicative node for I=1, ..., L—1. (14)
j=1

We turn to functions of our previous example in order to explain the way of constructing I-tree 3.
We show now a way of transformations of I-trees 3, and 3, for with F; >0 and F, > 0 in order to get I-trees

51 and 3, for 1’::1 >0 and ﬁ; >0, where
1;10:max{min{ﬂ,fg,fmf5},min{ﬂyfg,f;pfﬁ},nlin{fz,f3,f4,f5},Hﬁn{fz,f3,f4,f6}}
Fy =max{ f,, f,,min{ f3, f,}, s, fs} -

I-trees 3, and 52 associated with 1’::1 >0 and ﬁ; >0 are given in Fig. 1, band 2, b.

The collection of systems {Y;>0,s=1, ..., T]O} results from the type of the root node in the follow-
ing sense.
If vlo is a additive node then the collection {Y;>0, s=1, ...,n’}, for all terminal nodes of §1 di-
rectly coincides with the collection of systems corresponding to the terminal nodes of 3, (in our examples
AFY 1 51
g ." “-»\,_\\ o £ | "--\..\.\
1__(%.; R ~ F3 | N, S
f. I Fo= n"lun{ 3 4} \_\.\ \_\_\.\ ..\_\\.\.
. .2II. o 1 ¢ it e 1% A% o o* {
Fii=fy Firfy FER F=f,  Fo=f. FiLf, F'=f, Fi=min{f,f} Fi=fs Fs=fe
a) b)
Fig. 1. I-trees:
a)— 3, for F;, 20;b)— 31 for IF] >0
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0 o0
® F. o~ ~ o F
///,-II, \\1 ~5 2 -5 2 ’/,;::7"1\\1
[ Ty - = A
F‘?:;j // I \\\ F:? : /// ,f"/ \\\ \\‘\
\ *L i A\ e Sy
/\ F=min{fy £} /\ - /
i . A 2 Vi \ SN
\ i ol A P / \ S
\ : o \ o V4 \
02b ig 1 02‘ lz. "/ .! 1% . »
. * . 1% . . * 3
Fii=f, Fiz=f, Fo=F, Fy; =f,  Fp,=f, Fy'=min {f ff,) F'=min{f,f.f £} F$'=min {f f,f,£} F'=min{f,f,ft}
a) b)
Fig. 2. I-trees:
a)— 3, for F,>0;b) - §, for Fy >0
n =3, see Fig. 1), I .e.
Y, 20= £, 20, Y,20= f, >0, Y,>0=1{f; >0, f, >0, Y,20= f; >0,
3
0_.0 1 1 1 1
Y420:>f620’ n :nlzznk:i n1:2’ n2:17 n3:2'

If v is a multiplicative node then each system Y, > 0 corresponding to terminal node of gz (in our
examples 1 = 4, see Fig. 2) involves one of inequalities generating by each additive node (for our example:
F''=max{F},F3}>0 and F;' =max{F, ,F;}>0, see Fig. 2, a) and all inequalities generating by multi-
plicative nodes (for our example: F,' =min{f;, f,} >0, see Fig. 2, a), i. e.

9 2

Y, 20=1{f, 20, £, 20, f, 20, f, >0, Y,20=1{f,20,f,>0,f,20,f, >0,
Y,>0={f,>0,£ >0, f,>0,f, >0, Y,20=1{f,20,£,20,f,>0,f, >0, |
3
nozn?:Hn}( =4, n=2, =1, M =2.
k=1

Multiplicative nodes of I-trees are shown as filled circles, and additive nodes of I-trees are shown as
empty circles in Fig. 1-4.

We further call I-tree for phi-function a phi-tree. Based on transformation of phi-tree given above we
always may present a basic phi-function ® in (6) as follows

k - k
@, = max f; = max min f, (15)
. . . )

i=1,..n; i=L.n; j=1,...J;

where f e {f}.

w0 b )
Fu9>0 A )
v d \‘\\
a )
bt * o1* o* of*
o o . ol % ol 0)= 0 2 0OF

Fh F% F;(UO]ZO Fag F i i HEFER ;

a) b)

Fig. 3. I-trees:
a)— 3, for Fy(u) > 0;b)— &, for F,(u’)>0
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F*Su9)>0 Fiu9>0

3
Fuzo Soe, g . =
¢ u9=0
S UO]ZO\/@;:BU // \\\
/ / \ // no:é \“\

(]

\4—- \
S y

(&) 5 3
Fi FeW920 Fiwdxo F3 FIY LeFTw)zo  Fs 2

a) b)

Fig. 4. I-trees:
a) — 3, for Fy(u) > 0;b) - &, for F,u’)>0

Finding number n’ of a system which corresponds to the terminal node of the transformed tree
3 and associated with F @ =0

Now we show the way to find a system Y , =71 , (u°) >0 and an appropriate number n° e {1,...,1}?}
of the terminal node of the transformed I-tree § without its direct construction. Let u” be given, so that
Fu’) =0.

We find a number 7’ of the terminal node of the transformed tree § which associated with F (uo) >0

in the following manner.
We denote a number of the terminal node of the transformed I-tree for Yno >0 by n’.

Let us consider two cases: a) root node vlo is additive and b) root node vlo is multiplicative:

1) if root node vlo is a additive and F(uo) 2 0 then one of the systems Fkl(u) >0, ke {1,2,...,N10 }, has
to be fulfilled at point 1.
Now we consider the sub-tree 3* with the root node v,i . Since E{l (u”) >0 then we are sure that there

exists some number n; of terminal node of the tranformed sub-tree 3* associated with inequality
k(0
T, )20,

Number nlo of corresponding terminal node of the transformed I-tree 3 is derived by recursive for-

mula:
n,if k=1
n’=n’ = = 0 (16)
e+ Y Mhif ke (2., N/},
i=1
Formula (16) for node vf, 0<Il<L -1, takes the form:
n,,if k=1
n! = 17

k-1

ng + Y MLif ke (2., N,
i=1

subject to ™ (uy) 0.

For our example shown in Fig. 3, a, applying (16), we have:

3-1
k=3, ny =1, n=2 n, =1, n’=ny+ ) M=+ +ny =1+2+1=4,

i=1

2) if root node vlo is a multiplicative one and F(uo) >0 then Fk1 (uo) >0, forall k= 1,2,...,N10 .
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Thus for each sub-tree 3}, with root node v, , k€ {1,2,..., N/}, there corresponds to at least one ter-
minal node of the transformed sub-tree 3* with number n; such that Y’,‘,k (uo) >0.

The number nlo of corresponding terminal node of tree 3 is derived by formula:

N}

k—1
n’=n’=n, +Z((nk—1)~Hn}J. (18)
k=2 1

i=

Recursive formula (18) for node v,l, 0<I< L -1, takes the form:

N k=1
n! =n}! +Z[(nfgl —1)~Hnﬁ“J. (19)
k=2 i=1

For our example shown in Fig. 4, a, applying (18), we have:
n =2, n, =1, ny =1, n =2 n, =1 n; =2

3 k-1
n’=n, +Z((nk —1)-Hn§J:nl+(n2 —DMl+(—1)-m M, =2+0+0=2.
k=2

i=1
Now we may conclude that each of L-level of I-tree 3, in particular 3", can be always transformed

to the two-level I-tree 3" To this aim we employ the algorithm given above to reduce the number of levels
of I-tree 3 stating form the last level L.

Based on formulas (16)—(19) we can also revivify each ny, k€ {1,2,.... N 10 }, by n° and generate corre-
sponding system Y , 20, n’e {1,2,...,n°}, where 1’ is derived by formula of the form (13) or (14).

The technique is applied for generating subregion W,c W, se {1,2,...,n=n"} by given point
u’ € Wso that W, = {u € R®: Y,(u) = 0}.

Construction of solution tree

The solution tree 3" describes feasible region W defined by (7) and is constructed as follows. The
tree root corresponds to inequality @ = min{@,, 7= 1, ..., M} >0, where @, € {f}. On the first level of 3" we

have T, =1; of nodes, where 1, is the number of terminal nodes of basic phi-tree 3, describing ®; >0,

where ®, = max f', f'= min ] fi} according to (15). To each node of the first level there corresponds an
i=1,..m, j=l,d]

inequality system {¢@ =0, lel >0. To construct the second level of 3" we add 1, terminal nodes of basic phi-

tree 3, describing @, > 0 to each node of the first level, where ®, = max £, f>= mi . fl.j2 . The number
i=1,..M, j=l,J?

of nodes of the second level of 3 becomes T, = MN:1-M2- To each node of the second level there corresponds an
inequality system {¢ =0, lel >0, flf >0. To construct the k-level of 3" we add 1, terminal nodes of basic phi-

tree §k describing &, >0, ®, = max f*, f*= min f”k to each node of the (k-1)-level of 3. The number
i=1,..M; jele gk

of nodes of the k-level of 3" becomes T, = N1 M2:--. M- To each terminal nodes of SZ there corresponds an
inequality system {¢ =0, flll 20, flf > O,....,fif >0. Note that T, =1n;My... NN, =M, Where 1 is the num-

ber of terminal nodes of 3". Now we may present feasible region W as a union of subregions W,
s=1,2,...,m; see (8). Each W, corresponds to s-th terminal node of 3" and therefore W, is determined by an

inequality system of the form {¢ >0, fslz 20,k=1,.,n.

Evaluation of the number 1 of terminal nodes of the solution tree 3*
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The number 1 of terminal nodes of the solution tree 3T for problem (1)—(2) depends on the number
N' of terminal nodes of phi-tree 3,5 for CI>'T >0,t=1,2,..., A, and the number 1" of the terminal nodes of
phi-tree SAQ* for CIDZ >0,i=1,2,...,N.

We denote the upper estimation of the number of terminal nodes of 3,5 by ", and the upper estima-
tion of the number of terminal nodes of S .. by N"". Then the upper estimation njv of the number of termi-
nal nodes of the solution tree 3" for problem (10)—(11) is defined as

ny=m"H"mMH". (20)

Let us derive ' and " in (20).

Let us consider phi-functions for describing non-overlapping and containment constraints

&Y =min{®, .k =1,...,n =n, -n,}, P =min{®,, k=12,...n =n,},

where @, is a basic phi-function in o, &, is a basic phi-function in ®** . Here P18 isa phi-function
of objects A and B for non-overlapping constraint; ®<* is a phi-function of objects A and Q" for contain-
ment constraint.

We choose here a pair of objects A and B such that n = max{n;,t =1,...,A}, where nT is the number

of basic phi-functions for <IJ'T in (2) and n = max{ n;,i =1,...,N}, where ”1 is the number of basic phi-
functions for ‘I’, in (2).
We define the number of terminal nodes of 3,5 and 3 1o in the form

N =Nz M, n=NiN2..na, 1)
respectively.
Based on (21) we have

n" =(maxm,k=12,...1})", N =(maxfn i,k =12,...n'})" .(22)

For constructing the solution space of problem (1)—(2) we involve ready-to use free radical basic phi-

functions &, for non-overlapping constraints, A € R, B € R, and phi-functions ®*®" for containment con-
straints, A € R. Here R is a collection of basic objects of four types (see [16] for details).

The values of upper estimations T]y* and T]"* (22) for optimal packing problem of a pair of composed

objects into a rectangular container have been obtained in [17]. In our problem we have

N =(max (385, 22m* +6m+7)})' , 0" =16" , where m is the maximal number of frontier elements of ba-
sic objects which form our composed objects.

In general case to solve problem (1)—(2) by inspecting all terminal nodes 1 of the solution tree is an
unrealistic task, because in fact we have to solve optimally all subproblems (11) of problem (10)-(11) to get
global solution. Therefore, we propose an approach to get “good” local optimal solutions of problem (1)-(2)
using special optimization procedure involving the algorithm of generating a non-empty subregion W, c W
by starting point u” € W.

Generation of non-empty subregion W, by starting point u’ € W

Our aim is to extract from Y = 0 an inequality Y(#) = 0, which describes subregion W; c W, such
that u” € W, = {u € R®: Y,(up) = 0}, where Y,(u) is defined by (9).

We form subregion W as follows. We realise an exhaustive search of nodes vi ,s=1,...,m, of the

first level of 3 sequentially and search for s, such that fsll w’)= fl(uo) = max{fll(uo),fz1 (uo),...,fnll (uo)}.
Then we realise an exhaustive search of offsprings vf ,s=1,...,M,, of node vil and search for s, such that

fo@®y = f2 ) =max{ ;> @"), f; u®),..., fi u°)}. And s0 on.
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h . . .
On the n" level of our solution tree 3 we realise an exhaustive search of nodes vi,s=1,...,m,

which are offsprings of node y! and search for Sy such that

Sp—1

fs’: @®) = £"@®) =max{ " @®), £y w")...., fn'fx (u”)}. Then we form inequality system which corresponds to

s™ terminal node of our solution tree 3 in the form: W, ={ue R® : 9 >0, lel 20, f; 20,..., f;' 20}. To each

sequence of numbers sy, $», ... , S, ... , 5, there corresponds the number s.
In Section 5 we give an example of constructing a solution tree. We show how to find by the given
starting point u° the number n° of a system which describes a subregion W, and corresponds to the terminal

node of the transformed tree 3 and associated with T,(u) =0.

Solution algorithm

In order to solve problem (1)—(2) defined in Section 2, we propose the algorithm which works very
fast and uses multistart method for a set of feasible starting points. For each starting point we apply special
algorithm to search for locally optimal solutions. We apply the algorithm introduced in [20] describe it
below.

The algorithm involves of the following procedures: 1) generation of a number of starting points
from feasible region of problem (1)—(2), employing the starting point algorithm [18]. The algorithm also al-
lows us to fill holes of composed objects by smaller objects. Assuming that each smaller object fixed within
the appropriate composed object we further deal with irregular object bounded by one outer counter; 2)
search for a local minimum of problem (1)—(2) based on our solution tree technique and employing the algo-
rithm of Local Optimisation Reduction Algorithm (LORA) for each starting point; 3) choice of the best of
local minima obtained at the second step as an approximation to the global solution of problem (1)-(2). We
develop special solver for layout problems which uses the core representation of inequlities in a sybmol form
and provides exact calculation of Jacobian and Hessian matrixes. The search for local minima of nonlinear
programming problems is performed by IPOPT algorithm [19].

An essential part of our local optimisation scheme is LORA algorithm that simplifies description of
feasible region of the problem and reduces the runtime of local optimisation. It is due to this reduction our
strategy can work efficiently with collections of composed objects.

For each starting point #” € W we apply the following local optimisation iterative procedure.

The main idea of the procedure is as follows.

First for each object Ti(u? ),ie {1,2,..., N}, we construct minimal enveloping rectangle Rl.o with
sides parallel to axes of fixed coordinate system, here u. = (v,87) = (x’,y’,0)). Then we extend semisides
of R by 0.5p and get rectangle R;.

We assume that the eigen coordinate system of R; coincides with the eigen coordinate system of 7;.

We note that vertices of R; are defined as p;,, ¢ =1, 2, 3, 4.
We suppose that rectangle Ri(u;) (conjoint with object Ti(x;)) may move such that each vertex

Pig(u;) = (xig(uy), yig(u;)) has to be arranged within the fixed “square container” Qiq( pgj) with center point
pf; = Diy ) = (xg,y,%) and side of length 9, i. e
Py )€, (ph), q=1,2,3,4. (23)

Here & is a given step of LORA algorithm which calculated depending on sizes of objects.

Thus, relation (23) provides such placement of rotated and translated object T:(u;) that any point of
T(u;) can vary within §-square only. The additional constraints on placement parameters u; we call
d-inequalities involving 16 nonlinear inequalities of the following form:

Xy —0.58 < x;, (u;), X, (u; ) S xp) +0.58, Yig —0.58< y, (), Yig ;) < yiy +0.58,
Pig(u; ) =v, +(pj —v))-M(=6})- M (8)), q=1234,
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0
i

inequalities for all objects Ti(u;),i=1,2, ..., Nby A=0.
By analogy we construct minimal enveloping rectangle Rf of Q i ( pf;), g=1,2,3,4.

where M(®)is a rotation matrix, v, =(x;,y; ), v? =(x, y?) . Further, we denote the inequality system of 5-

These d-inequalities provides a motion of object Ti(u;) within Rl.8 taking into account distance con-
straint.
Then we construct minimal enveloping rectangle R? for each basic object T;*(x,), which form

composed object T;(u;) = U T (u,).
k=1

Let us consider now a pair of objects T«u;) and T{(u;), i <j € Iy. If int Rf (int R? =, then we re-
place phi-inequalities for T«(u;) and Tj(u;), which take part in describing of our feasible region W, by
d-inequalities for placement parameters u; and u;. We realize the same transformations for basic objects.

Step 1. For each object Ti(u?) and each its basic object Tik (u?) we construct R;, Q;,, g=1,2,3,4,
Rf and Ri ,k=1,2,...,n,i=1,2, ..., N and form the inequality system A > 0. Further we note the system
of inequalities A =20, ¢ = 0 by @5 = 0.

Step 2. We construct solution tree 33 eliminating such levels for which:

a) int R’ Nint Q" =@ or int Ry Nint Q" =D for ie Iy, ke, .

b) intR?NintR? =@ or intR} NintR} = or B} u,u))>0, for i< jely, kel,, lel, , B isa
adjusted phi-function for the pair of basic objects T(x,) and Tll (u;). We set here that Ci:'fjl 20 if
dist(T}, 7)) 2 p~ ++/28.

Step 3. Based on 33 we generate the inequality system Y(u) >0 provided that inequality system
¢ = 0 is replaced by @5 = 0. ‘

Step 4. Search for a point of local minimum u’* of subproblem

mink(u) s.t. ueW, cR°,

starting from u° e Wﬁl , where subregion W;ﬁ c W'is described by inequality system Y°(x)>0.
We take point u' = u’" as a new starting point, follow steps 1)-3) and form subregion W;, . Then our
algorithm searches for a point of local minimum u'* of subproblem

mink(x) s. t. uerlcRG.

s

We take point x> = u'" as a starting point for further local optimisation following steps 1)-5).

We repeat the iterative procedure until K@) = k@®""), where k=1, 2, ... is the number of our it-
eration procedure. Then point u* is considered as a point u of local minimum of problem (1)—(2).

The use of the algorithm allows us to reduce considerably the number of phi-inequalities describing
the solution space for local optimisation, which may be crucial even when the number of composed objects
n =2 (see [17] for details).

So, while there are O(m”) pairs of basic objects in the container, our algorithm may in most cases on-
ly actively controls O(m) pairs of basic objects (this depends on the sizes of basic objects and the value of J),

N
because for each basic object only its “d-neighbors” have to be monitored. Here m = Zni is the number of

i=

all basic objects, n; is the number of basic objects in object 7.
The d parameter provides a balance between the reducing number of inequalities in each NLP sub-
problem and the number of the subproblems which we need to generate (it also takes computational re-
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sources) and solve in order to get a local optimal solution of problem (1)—(2). Our algorithm allows us to re-
duce considerably computational costs (computational time and memory).

Thus the algorithm reduces the problem (10)—(11) with o(m?) inequalities describing solution space
W to a sequence of subproblems, each with O(m) inequalities describing solution subregion W;. This reduc-
tion is of a paramount importance, since we deal with nonlinear optimization problems.

Ilustrative example

For the sake of simplicity we consider tree simple convex objects:
— circle C; of radius r = 5 with the center point at (0,0);
— polygon K, with vertices (0.0, 0.0), (11.0, 0.0), (11.0, 11.0);
— polygon K; with vertices (0.0. 0.0), (8.0, 0.0), (14.0, 7.0), (14.0, 15.0),
and rectangular container Q of width w = 22 and variable length /.

We show here how we construct a system of inequality with smooth functions, which describe sub-
region Wy, c W by given starting point u, € W and search for a point of local minimum of problem min/ s. t.
ue W, Here u = (, xi, y1, X2, ¥2, 02, X3, ¥3, 03).

Let starting point uo € W be found, say =30, x1°=5.500000, y1°=9.959309, x2° =4.238658,
y2° = 1.264635, 02° = 0.087266, x3° = 20.661464, y3° = 13.080639, 03° = —1.047198.

Then we form inequality system W, c W, such that u € W,.

First we derive phi-functions for containment constraints:

@ = f' =min {—x1 + -5, =yl + 17, x1 = 5, y1 = 5};

O = f2=min (—x2+1, —11%cos02 —x2+1, —11%sinB2 — 11%cos®2 —x2+1,  —y2 + 22,
11%#sin02 — y2 + 22, 11%#sin02 — 11*c0s02 — y2 + 22, x2, 11*cos02 + x2, 11*sinB2 + 11*cos02 + x2, y2, —
11#sin02 + y2, —11*sinf2 + 11*cos02 + y2};

@5 = £3 = min {x3, 8*cos03 +x3, 7#sin03 + 14%cos03 + x3, 15%sind3 + 14%c0s03 + x3, y3, —
8*sinf3 + y3, —14%*sin03 + 7*cosO3 + y3, —14* sinO3 + 15%cosO3 +y3, —x3+1, —8*cosd3 —x3 +1,
7#sin03 — 14*c0s63 —x3 +1, —15%sin63 — 14*cos63 —x3 +1, —y3 +22, 8%sinB3 —y3 +22, 14* sinf3 —
T*cos03 —y3 + 22, 14%sin03 — 15%cos03 — y3 + 22}.

Each phi-tree for containment constraints f' >0, f>>0, f> > 0 has only one node. Therefore we in-

troduce fy = min{ f ! f 2 f 3} > 0, for which I-tree also has only one terminal node, i. e. T]O =1.
Then we define phi-functions for non-overlapping constraints:

DY = 2 =max{ %, £,°, 5, 7 370 fs ) Where

£,"? =—sin62*x1 — cos02*y1 + x2*sinf2 + y2*coshH2 - 5;

2 = min {x2° - 2¥x1#x2 + x17 + y2° = 2*y1#y2 + y1° — 25, (<0.3827*sin02 — 0.9239*c0s02)*x1 +
(0.9239%sin02 — 0.3827%*c0s02)*y1 — (-0.3827*sin62 — 0.9239*c0s02)*x2 — (0.9239*sin02 —
0.3827*cos02)*y2 — 1.9134};

f5? = cos02%x1 — sin02*y1 — x2*c0s02 + y2*sin62 — 16;

£12 = min {(11%c0s02 + x2)* — 2*#(11%c0s02 + x2)*x1 + x1° + (=11%¥sin62 + y2)* — 2*(~11#sin02 +
y2)*y1 + y1> = 25, (<0.7071%#sin02 + 0.7071%c0s02)*x1 + (=0.7071*sin62 — 0.7071*cosH2)*y1 —
(—0.7071%sin02 + 0.707 1 *cos02)*x2 — (=0.7071%*sin02 — 0.707 1 *cos02)*y2 — 11.3137};

f42 = (0.7071#sin02 — 0.7071%c0s02)*x1 + (0.7071*#sin02 + 0.7071%*cos02)*y1 — (0.7071*sin02 —
0.7071%c0s02)*x2 — (0.7071%sin02 + 0.707 1 *cos02)*y2 — 5;

£ = min {(11#sin02 + 11%*cos02 + x2)* — 2*(11#sin02 + 11*cos02 + x2)*x1 + x1% + (—11*sin62 +

11%c0s02 + y2)* — 2%(—=11%#sin02 + 11*cos02 + y2)*yl + y1* — 25,(0.9239%sin02 + 0.3827*cos02)*x1 +
(-0.3827*sin02 +0.9239*c0s02)*y1 — (0.9239*sin02 + 0.3827* c0s02)*x2 — (-0.3827*sin62 +
0.9239*co0s02)*y2 — 16.2856}.

Transformed phi-tree for £'> >0has 1'> =6 terminal nodes (Fig. 5).
q)C1K3 — f13 — max{f113’f213’f313’f:3’f513’f613’f713’f813}’ Where
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£P =—sin63*x1 — cos03*y1 + x3*sin03 + y3*cos03 - 5;

£3 = min {x3% - 2#x1#x3 + x17 + y3° — 2*y1*y3 + y1°> — 25, (-0.3985%5in03 — 0.9171*cos03)*x1 +
(0.9171#sin03 — 0.3985%* c0s63)*y1 — (-0.3985*sinB3 — 0.9171%c0s63)*x3 — (0.9171*sin63 —
0.3985*cos03)*y3 — 1.9927};

£33 =(-0.6508*sin03 + 0.7593*c0s03)*x1 + (-0.7593*sin03 — 0.6508*cos03)*y1 —
(-0.6508*sin83 + 0.7593*co0s03)*x3 — (-0.7593*sin03 — 0.6508*cos03)*y3 — 11.0741;

£.? =(0.6823*sin03 — 0.7311*cos03)*x1 + (0.7311%*sin63 + 0.6823*cos03)*y1 — (0.6823*sin03 —
0.7311*co0s03)*x3 — (0.7311%sin03 + 0.6823*cos03)*y3 — 5;

13 = cosB3*x1 + (-sin63)*y1 — x3*cos03 + y3*sin3 - 19;

£.2 = min {(7*sin63 + 14*cos03 + x3)* = 2%(7*sin03 + 14*cos03 + x3)*x1 + x1% + (—14*sin03 +
7#cos03 + y3)” — 2%(~14*sin03 + 7*cosO3 + y3)*yl + y1> — 25, (-0.3469*sin03 + 0.9379*cos03)*x1 +
(=0.9379*sin03-0.3469%*c0s03)*y1 — (-0.3469*sin03 + 0.9379*c0s03)*x3 — ( 0.9379*sinB3 —
0.3469*cos03)*y3 — 15.3912};

£33 = min {(8%*c0s03 + x3)* — 2#(8*c0s03 + x3)*x1 + x1” + (~8*sin03 + y3)’— 2*(~8*sin03 +
y3)*y1 + y1> = 25, (<0.9085%sin03 + 0.4179*cos03)*x1 + (—0.4179*sin03 — 0.9085%cos03)*y1 —
(-0.9085*sinB3 + 0.4179*cos03)*x3 — (-0.4179*sin03 — 0.9085*co0s03)*y3 — 7.8855};

fi? =min {(15*sin03 + 14*cos03 + x3)*= 2*(15%sin03 + 14*c0s03 + x3)*x1 + x1° + (~14*sinf3 +
15%c0s03 + y3)” — 2#(—14*sin03 + 15%cos03 + y3)*yl + y1> — 25, (0.9303*sin03 + 0.3667*cosH3)*x1 +
(=0.3667*sin83 + 0.9303*cos03)*y1 — (0.9303*sin03 + 0.3667* cos03)*x3 — (—0.3667*sinb3 +
0.9303*cos03)*y3 —20.9224}.

Transformed phi-tree for £'*> >0 has n'° =8 terminal nodes (Fig. 5).
q)Ksz — f23 — max{f123, f223,f323, f423, f523, f623,f723}, “/here

£,2 = min {-sin02%x3 — cos02*y3 + x2*sinf2 + y2*cos02, —sin02*(8*cosH3 + x3) — cosO2*
(—-8*sinB3 + y3) + x2*sinh2 + y2*cos02, —sinB2*(7*sinB3 + 14*cosB3 + x3) — cosO2*(—14*sinO3 +
7*c0s03 + y3) +x2*sin02 + y2*cos02, —sin02*(15%*sinB3 + 14*cosO3 + x3) - cosf2*(-14*sinb3 +
15%cos03 + y3) + x2*sin02 + y2*cos62};

f223 =min {c0s02*¥x3 + (-sinB2)*y3 — x2*c0s02 + y2*sinB2 — 11, cosB2*(8*cosO3 + x3) + (—sinf2)*
(—-8*sinB3 + y3) — x2%c0s02 + y2*sinf2 — 11, cos02*(7*sinB3 + 14*cos03 + x3) + (—sin62)*(—14*sinB3 +
7*c0s03 + y3)—x2*cosB2 + y2*sinf2 — 11, cosB2*(15%sinB3 + 14*cos0B3 + x3) + (—sinB2)*(—14*sin63 +
15%cos03 + y3) —x2*c0s62 + y2*sinf2 — 11};

£¢? =min {(0.7071*sin62 — 0.7071*c0s02)*x3 + (0.7071*sin62 + 0.7071*cos62)*y3 —

(0.7071*sin62 — 0.7071*c0s02)*x2 — (0.7071*sin62 + 0.7071*co0s82)*y2, (0.7071*sin62 — 0.7071*cos02)*
(8*c0s03 + x3) + (0.7071*#sin02 + 0.7071%*c0s02)*(—8*sin63 + y3) — (0.7071*sinB2 — 0.7071*c0s02)*x2 —
(0.7071*#sin62 +0.7071%*c0s02)*y2, (0.7071*sin62 — 0.7071*c0s02)*(7*sinB3 + 14*cosO3 + x3) +
(0.7071#sin02 + 0.7071%*c0s02)*(—14*sinB3 + 7*cos03 + y3) — (0.7071* sin62 — 0.7071*c0s02)*x2 —
(0.7071%#sin62 + 0.7071*co0s02)*y2, (0.7071*sin62 — 0.7071*cos02)*(15*sin63 + 14*cosH3 + x3) +
(0.7071*#sin62 + 0.7071*c0s02)*(—14*sinB3 + 15*cos03 + y3) — (0.7071*sin62 — 0.7071*c0s02)*x2 —
(0.7071*#sin62 + 0.7071%c0s02)*y2};

2 = min {-sin03*x2 — cosH3*y2 + x3*sinf3 + y3*cos0H3, —sinB3*(11%cos02 + x2) — cosO3*(—
11%*sin02 + y2) + x3*sinB3 + y3*cos03, -sinB3*(11*sinf2 + 11*cos02 + x2) — cosO3*(—11*sinH2 +
11*c0s02 + y2) + x3*sin03 + y3*cos63};

£ =min{(-0.6508*sin63 + 0.7593*c0s03)*x2 + (~0.7593*sin0H3 — 0.6508*cos03)*y2 —

(-0.6508%*sin83 + 0.7593*cos03)*x3 — (-0.7593*sin03 — 0.6508*cos03)*y3 — 6.0741, (-0.6508*sinO3 +
0.7593*cos03)*(11*cos02 + x2) + (-0.7593*sin63 — 0.6508*c0s03)*(—11*sin62 + y2) — (-0.6508*sin03 +
0.7593*co0s03)*x3 — (—0.7593*sin03 —0.6508*cos03)*y3 — 6.0741, (-0.6508*sinB3 + 0.7593*cosH3)*
(11#sin62 + 11%*cosB2 + x2) + (—0.7593*sin03 —0.6508*cos03)*(—11*sin62 + 11*cosH2 + y2) —
(-0.6508*sin03 + 0.7593*c0s03)*x3 — (-0.7593*sin03 — 0.6508*cos03) *y3 — 6.0741};
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Fig. 5. Tranformed phi-trees for containment constraints for f'> >0, >0, >0

2 = min {cos03*x2 + (-sin63)*y2 — x3*cos03 + y3*sin03 — 14, cosH3*(11*cos02 + x2) +
(—sinB3)*(—=11*sin02 + y2) — x3*cos0B3 + y3*sinf3 — 14, cosB3*(11*sinB2 + 11*cosh2 + x2) + (—sinB3)*
(=11%*sin02 + 11*c0s02 + y2) — x3*cos03 + y3*sin63 — 14};

£ = min {(0.6823*sin03 — 0.7311*cos03)*x2 + (0.7311%*sin63 + 0.6823*c0s03)*y2 —

(0.6823%*sin63 — 0.7311%*cos03)*x3 — (0.7311*sin03 + 0.6823*c0s03)*y3,(0.6823*sin03 — 0.7311*cosH3)*
(11*cos02 + x2) + (0.7311*sin03 + 0.6823*c0s03)*(—11*sinB2 + y2) — (0.6823*sinO3 — 0.7311*c0s03)*x3 —
(0.7311*sin03 + 0.6823*cos03)*y3, (0.6823*sin03 — 0.7311*cos03)*(11*sinb2 + 11*cosH2 + x2) +
(0.7311*sin63 + 0.6823*c0s03)* (—11*sin62 + 11*cos62 + y2) — (0.6823*sin03 — 0.7311*cos03)*x3 —
(0.7311*#sin03 + 0.6823*c0s03)*y3}.

Transformed phi-tree for £2* >0has N =7 (Fig. 5) terminal nodes.

We build the solution tree of our problem using phi-trees. The solution tree has
n=1"-1n"-1" 1" =1-6-7-8=336 terminal nodes.

In order to generate a system of inequalities with smooth functions which describe subregion W, c W
we derive values of each our function at point u:

Mug) =0.2950053= 0.3, since

f'(uy) =min{25.7613416, 14.8031999, 13.8444867, 20.7353650, 21.6940780, 10.7359363,
4.2386584, 4.2386584, 15.1968001, 16.1555133, 16.1555133, 1.2646352, 0.3059220, 11.2640637} = 0.5,

f*(uy) = min{25.7613416, 14.8031999, 13.8444867, 20.7353650, 21.6940780, 10.7359363,

4.2386584, 4.2386584, 15.1968001, 16.1555133, 16.1555133, 1.2646352, 0.3059220,
11.2640637} = 0.3059220,

£ (uy) = min {20.6614640, 16.6614640, 7.5992862, 0.6710829, 13.0806390, 20.0088422,

21.7049947, 17.7049947, 9.3385360, 13.3385360, 22.4007138, 29.3289171, 8.9193610, 1.9911578,
0.2950053, 4.2950053} = 0.2950053.

" (uy)=0.8497317 = 0.85, since
£ (uy) ==13.7715209, f,*(u,) = min {52.1883321, -5.7309188} = —5.7309188,
f2(uy) =—15.5012489, f,*(u,) =min {162.2158087, —17.1634402} = —17.1634402,
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 f=0.30

mingf, .fs} 50
12
24377 £=-573  fi=-15.50 f12=-17.16 fg=-7.99

min{fo, o1} 50

[ 3
L fo60 fL-12.32 f;’=_16‘g3f;3=-14_12 271591 £=-19.19 32647

min{f,, o1t 10

23
L5066 FE-1599 2151 f5-2013 f=-20.71 fs=-22-33

Fig. 6 Generating of an inequality system, using point uy € W

x21 0,

2 (uy) =0.8497317, f)*(u,) = min { 90.2423482, -7.9909173} = -7.9909173.
5 (uy) =1.4580729 =1.46, since
£ (uy) =-19.6908780,
3 (uy) = min {214.6126916, —12.3212292} = -12.3212292,
12 (uy) ==16.9314140, f,°(u,) = 1.4580729, f°(u,) =-14.1224191,
185 (uy) = min {117.3681339, —15.9135265}= —15.9135265,
P (uy) =min {200.5713968, —19.1941407} = -19.1941407,
f3(uy) = min  {58.3140862, —5.4663458} = —5.4663458,
2 (uy) =2.7853770 = 2.79, since
£ (uy) = min {-13.2023824, —19.7555987, —20.6554760, —16.0668645} = —20.6554760,
£ (uy) = min {4.3304797, -0.2581318, -9.4336548, —15.9868711} = -15.9868711,
15 (uy) = min {~1.5047920, 6.3736700, 13.4980538, 14.8872392} = —1.5047920,
2 (uy) = min {~20.1305692, —11.1198967, —4.8105559} = —20.1305692,
1 (uy) = min {-20.7097338, —19.6360746, —8.6885974} = —20.7097338,
13 (uy) = min {~16.0215566, —22.3308974, —13.3202249} = -22.3308974,
7 (uy) = min {15.2133244, 13.6776549, 2.7853770} = 2.7853770.

Scheme of generating of an inequality system, which describes nonempty subregion W, c W, using
point uy € W, is given in Fig. 6.

x1+1-51 0 y1 4171 0 x1-51 0 yj_51 0
x2+11 0 ,

~11%cos02 —x2 +11 0,

~11%5inf2 — 11%cos02 —x2 +11 O

—y2 422, 11%sinf2 —y2 + 221 O

11%sin02 — 11%cos62 — y2 + 221 0
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11%cos02 + x21 0 ,

11#sin02 + 11*cos02 + x21 0,

y2i 0,

~11*sin02 +y21 O

~11*#sin02 + 11%*cos02 + y21 O
31 0

8*cosf3 +x31 0 ,

7#sin03 + 14%*cos03 + x31 0 ,
15%sin03 + 14%*cos03 + x31 0

y3i 0,

—8*sin03 + y3i 0 ,

—14%#sin03 + 7*cos63 + y3i 0
—14* sinB3 + 15%cos03 + y31 0
x3+11 0 ,

—8*cos®3 —x3+11 0 ,

—7#sin03 — 14%cos03 —x3 +11 O ,
~15%sin03 — 14%*cos03 —x3 +11 0
—y3+221 0

8*sin03 — y3 + 221 0

14* sinB3 — 7*cos03 —y3 +221 0
14%$in03 — 15%cos03 — y3 + 221 0
(0.7071%#sin62 — 0.7071*cos02)*x1 + (0.7071*sin02 + 0.7071*cos02)*y1 — (0.7071*sin62 —

0.7071*co0s02)*x2 — (0.7071%#sin02 + 0.7071*cos02)*y2 — 510,
(0.6823%sin63 — 0.7311*co0s83)*x1 + (0.7311%sin03 + 0.6823*cos03)*y1 — (0.6823*sinf3 —

0.7311*cos03)*x3 — (0.7311*sin03 + 0.6823*cos03)*y3 — 510,
(0.6823*sin63 — 0.7311*c0s03)*x2 + (0.7311%sin03 + 0.6823*cos03)*y2 — (0.6823*sinf3 —

0.7311%c0s03)*x3 — (0.7311* sinf3 + 0.6823*cos03)*y31 0
(0.6823%*sin03 — 0.7311%c0s03)*(11*cos02 + x2) + (0.7311%sin03 + 0.6823%C0s03)*(~11*sin62 + y2) —

(0.6823*sin03 — 0.7311*cos63)*x3 — (0.7311%*sin03 + 0.6823*cos63)*y3i 0,
(0.6823*sin03 — 0.7311%*cos03)*(11*sin02 + 11*cos02 + x2) + (0.7311*sin03 + 0.6823*cos03)*
(=11%#sin02 + 11*cos02 + y2) — (0.6823*sin03 — 0.7311*cos03)*x3 —

(0.7311*sin03 + O.6823*cos93)*y3i 0,

We found a local minimum point u*:(l*,xf,yik,x;,y;,ﬂz,x;,y§,6§), where l*:15.8871253,
x, =10.8871253, y,=13.0710679, x,=4.8871253, y,=0.0000000, 6,=0.0000000, x,=6.5463322508,
¥,=21.9999999, 6 =2.4659396.

Computaional results

We give a number of examples to demonstrate the effectiveness of our methodology for rectangular
domain given in [20].

For local optimisation in our programs we use IPOPT, which is available at an open access non-
commercial software depository (https://projects.coin-or.org/Ipopt).

We use computer AMD Athlon 64 X2 5200+ for our computational experiments.

The comparison was carried out with the results given in [8] and [9]. The results have been improved
(see Table 1).

The Table 1 shows the results of comparison (the length of the occupied parts of the strip) for five
data sets of Profilel, Profile2, Profile3, Profile4 and Profile5.
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Table 1. Comparison results

Data sets Profilel | Profile2 | Profile3 | Profile4 | Profile5
The best result given in [8], [9] | 1359.90 | 3194.19 | 7881.13 | 2425.26 | 3332.70
Our results 1318.49 | 3104.72 | 7501.96 | 2382.62 | 2996.306

Further we applied our method to some instances used in recent paper [21] by Kallrath and Reben-
nack and compare our optimal solutions to theirs (see Table 2).

Table 2. Comparison of our results to those in [21]

Name Our result | The best from [21] | Improvement (%)
TC30 95.36535 103.45212 8.4798
TC50 | 154.470487 166.91505 8.0563
TC100 | 300.5142183 322.64663 8.3660

Conclusion

We propose here the automatic feasible region generator, using phi-trees. The generator allows us to
form ready-to-use systems of inequalities with smooth functions in order to apply efficient nonlinear optimi-
sation procedures. We develop an efficient solution algorithm and original solver for nonsmooth layout
problems which uses the core representation of inequlities in a sybmol form and provides exact calculation
of Jacobian and Hessian matrixes. The search for local minima of NLP-problems is performed by IPOPT
algorithm. An essential part of our local optimisation scheme is LORA algorithm that simplifies description
of feasible region of the problem and reduces the runtime of local optimisation. It is due to this reduction our
strategy can work efficiently with collections of composed objects and search for “good” local-optimal solu-
tions for layout problems in reasonable time.
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Beryn

HENEPETUHHUX NIHIA I3
3BEPEXEHHAM KITACY
OU®EPEHLIMOBHOCTI

Ilobyoosano ma Oocnidiceno onepamopu inmepainayii
@yHKYIll 080X 3MIHHUX 13 30epediceHHAM Kaacy oughepenyi-
H06HOCMI, SAKOMY HANEXHCUMb HAOIUINCYBAHA (HYHKYIA 3a
YMOBU, WO Ciou yux onepamopis i Criou iX YacmuHHUX
NOXIOHUX 3a OOHI€N [3 3MIHHUX 00 (QIKCOBAHO20 NOPSAOKY
cnignadaioms Ha 3a0aniti cucmemi NiHI 3 BI0NOGIOHUMU
caidamu HabauNCy8anoi yHKyii.

. ‘ 0° f(x, . .. o .
Hexait " (x,y)= 9 f(xy) . Omeparopu epMiTOBOI iHTEpIIiHALIT, 1110 BAKOPHUCTOBYIOTH JUIs CBOET

ay’

MOOYIOBH CIiAM HAOMKyBaHO1 (QYHKINIT Ta 11 YJACTHHHMX MOXIAHUX JI0 3aJaHoro mopsaky N > 1 Ha 3amaHii

CHCTEMI napajCJIbHUX NPAMUX

M N _
Ef ()= 223 O 0oy () 40,

k=1 s=0
f(O,x)(x’ yk) — a f()i’ y)
dy

h/i,[;)()’/) = 8,{,(5

p.s?

(r=x)

Y=Yk

p=01,...,N—s;
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