Хвороби пшениці, поширені в україні: шкідливість, генетичний контроль та результативність селекції на стійкість

Автор(и)

DOI:

https://doi.org/10.30835/2413-7510.2016.74196

Ключові слова:

пшениця, снігова плісень, септоріоз, піренофороз, борошниста роса, бура листкова іржа, вірусна хвороба, ген стійкості, джерело стійкості

Анотація

Наведено аналіз джерел літератури щодо найбільш шкідливих на території України хвороб пшениці: снігова плісень, септоріоз, піренофороз, борошниста роса, бура листкова іржа, вірус смугастої мозаїки пшениці, вірус жовтої карликовості ячменю. Акцентовано увагу на симптоматиці прояву цих хвороб, їх шкідливості, генетичних основах стійкості та основних результатах селекції. Визначено доцільність та актуальність проведення досліджень у напрямку створення стійких до хвороб сортів, пошуку нових джерел стійкості, розширення генетичного різноманіття існуючих сортів пшениці, вивчення складу популяцій збудників та ідентифікації нових генів стійкості. 

Посилання

Peresypkin, VF. Atlas of diseases of field crops. Кyiv: Urozhay; 1981. 248 p.

Bublyk LI, Vasechko GI, Vasyliev VP et al. Handbook for plant protection. In: Lisovyi MP, editor. Кyiv: Urozhay; 1999. 744 p.

Sanin SS, Nazarova LN, Ibragimov TZ et al. Disease epidemiology on cereal crops in the European region of Russia. Phytopathology. 2006; 96: 102.

Bockus WW, Appel JA, Bowden RL et al. Success stories: breeding for wheat disease resistance in Kansas. Plant Dis. 2001; 85: 453-461.

Theophrastus. 370-286 B.C. Enquiry into plants. In: Arthur Hort, english translation. Vols. 1 and 2. London: Harvard University Press; 1916.

Biffen, RH. Mendel’s laws of inheritance and wheat breeding. J. Agric. Sci. 1905; 1: 4-48.

Vavilov, NI. Laws of natural immunity of plants to infectious diseases. Т. 2. Selected works. Leningrad: Nauka; 1967. P. 362-434.

Vavilov, NI. Doctrine of plant immunity to infectious diseases. Т. 2. Selected works. Leningrad: Nauka; 1967. P. 260-361.

Vavilov, NI. Immunity challenges of cultivated plants. Т. 4. Selected works. Moscow- Leningrad: Nauka; 1964. P. 4-61.

Zhukovskiy, PM. Co-evolution of host plant and parasite. In: Genetic bases of plant breeding for immunity. Мoscow: Nauka; 1973. P. 120-134.

Zhukovskiy, PM. The current state and development of NI Vavilov’s basic ideas. In: Works on applied botany, genetics and breeding. Т. 54, Issue 1. 1975. P. 229-238.

Berliand-Kozhevnikov VM, Fedin MA. Wheat breeding for resistance to major fungal diseases. Overview. Moscow: All-Union SRI of study the information and technic-economical for agriculture; 1977. 56 p.

Person K, Sidkhu G. Genetics of interactions in the “host–parasite” system. In: Use of mutations in plant breeding for disease resistance. Leningrad: All-Union Institute of Plant Production; 1974. P. 3-18.

Shcherbakov, VG. Genetic systems of plant resistance. In: Genetic bases of plant breeding for immunity. Мoscow: Nauka; 1973. P. 11-64.

Flor HH. Host–parasite interaction in flax rust – its genetics and other implications. Phytopathology. 1955; 45: 680–685.

Van Der Plank, Ya. Resistance of plants to diseases. Moscow: Kolos; 1972. 253 p.

Dyakov, YuT. Дьяков Ю. Т. Overview of parasitism. In: Genetic bases of plant breeding for immunity. Мoscow: Nauka; 1973. P. 65-73.

Lisovyi MP, Lisova GM. The modern view on polygenic and monogenic resistance of plants within active physiological immunity. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 21-31.

Chesnokov YuV. Чесноков Ю. В. Resistance of plants to pathogens. Owerview. Selskokhoziaystvennaya biology. 2007; 1: 16-35.

Pukhalskiy VA, Odintsova TI, Izvekova LI et al. Problems of natural and acquired immunity of plants. Development of NI Vavilov’s ideas. Vestnik All-Union Association of geneticists and breeders. 2007. 11(3/4): 631-649.

Babayants LT, Rybalka AI, Babayants OV. Sources and donors of new genes of wheat resistance to phytopathogens. In: Works on fundamental and applied genetics. Kharkiv: Shtrikh; 2001. P. 232-241.

Fayt VI, Stelmakh AF, Motsnyi II, Lamari NP. Genetic systems of adaptability and expansion of spiked cereal diversity. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2010; 16(56): 118–130.

Climate atlas of the Ukrainian SSR. Leningrad: Gidrometeorologicheskoe izdatelstvo; 1968. 232 p.

Cassini, R. Fusarium diseases of wheat and corn in western Europe. In: Fusarium: diseases, biology and taxonomy. P. E. Nelson, T. A.Toussoun and R. J. Cook, eds. The Pennsylvania State University Press, University Park. 1981. P. 56-63.

Parry DW, Pettitt TR, Jenkinson P, Lees AK. The cereal Fusarium complex. In: Ecology of Plant Pathogens. Blakeman JP, Williamson B, eds. London: CAB International; 1994. P. 301-320.

Rossi V, Cervi C, Chiusa G, Languasco L. Fungi associated with foot rots on winter wheat in northwest Italy. J. Phytopathol. 1995; 143: 115-119.

Smiley RW, Patterson L-M. Pathogenic fungi associated with Fusarium foot rot of winter wheat in the semiarid Pacific Northwest. Plant Dis. 1996; 80: 944-949.

Lipps PE, Bruehl GW. Snow rot of winter wheat in Washington. Phytopathology. 1978; 68: 1120-1127.

Khvaley OA. Phytosanitary situation in fields of the Republic of Belarus. Zashchita I karantin rasteniy. 2015; 6: 27.

Conway KE, Williams EJr. Typhula-like snow mold on wheat in Oklahoma. Plant Disease. 1986; 70: 169-179.

Sunderman DW, McKay HC. Snow-mold-tolerant winter wheats. Crop Sci. 1968; 8: 630-631.

Basics of field crop breeding for resistance to pests. In: Kyrychenko VV, Petrenkova VP, editors. Kharkiv: Plant Production Institute nd. A VYa Yuriev; 2012. 320 p.

KOMUGI-integrated wheat science Database [Internet]. McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers J, Appels R, Devos KM. Catalogue of gene symbols for wheat. [2013]. Available from: http://www.shigen.nig.ac.jp/wheat/komugi/ genes/download.jsp.

McIntosh RA, Yamazaki Y, Dubcovsky J et al. Catalogue of gene symbols for wheat. In: Vol. 4 & CD: Proceedings 11th International Wheat Genetics Symposium; 2008; Brisbane Qld, Australia. 2008. 166 p.

Akar T, Duesuenceli F, Ceccarelli S, et al. Genetic variation in barley germplasm for resistance to snow mold. Proceedings 9th International Barley Genetics Symposium [Internet]. Brno Trade Fairs. 2004 June 20-26. Brno, Czech Republic. 2004. Available from: www.ibgs.cz/9th barley symposium 2004/book_of_abstracts/Session_7.htm.

Nishio Z, Iriki N, Takata K, et al. Influence of cold hardening temperature and soil matric potential on resistance to speckled snow mold of winter wheat. Phytopathology. 2003; 93: 65.

Nishio Z, Iriki N, Takata K, et al. Influence of cold-hardening and soil matric potential on resistance to speckled snow mold in wheat. Plant Disease. 2008; 92: 1021-1025.

Turner AS, Nicholson P, Edwards SG, et al. Relationship between brown foot rot and DNA of Microdochium nivale, determined by quantitative PCR, in stem bases of winter wheat. Plant Pathology. 2002; 51: 464–471.

Iriki N, Kawakami A, Takata K, et al. Screening relatives of wheat for snow mold resistance and freezing tolerance. Euphytica. 2001; 122: 335–341.

Leonov OYu. Resistance to snow mold in soft winter wheat accessions in relation to ecological and geographical origin. Genetychni resursy roslyn. 2010; 8: 92-97.

Shaner G, Finney RE. Weather and epidemics of Septoria leaf blotch of wheat. Phytopathology. 1976; 66: 781-785.

Thomas MR, Cook RJ, King JE. Factors affecting development of Septoria tritici in winter wheat and its effect on yield. Plant Pathol. 1989; 38: 246-257.

Kolomiets S. Populations of Septoria spp. affecting winter wheat in the Forest-Steppe zone of the Ukraine. In: Septoria and Stagonospora diseases of cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 32-33.

Shaw M. W. Epidemiology of Mycosphaerella graminicola and Phaeosphaeria nodorum: an overview. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 93-97.

Cordo CA, Simón MR, Perelló AE, Alippi HE. Spore dispersal of leaf blotch pathogens of wheat (Mycosphaerella graminicola and Septoria tritici). In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 98-101.

Sanin SS, Korneva LG, Akimova EA, Motovilin AA. Monitoring of Septoria spot of wheat and protective spraying. Zhashchita I karantin rasteniy. 2015; 7: 30–34.

Scharen AL. Biology of the Septoria/Stagonospora pathogens: an overview. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 19-22.

Brown JKM, Kema GHJ, Forrer H-R, et al. Field resistance of wheat to Septoria tritici leaf blotch, and interactions with Mycosphaerella graminicola isolates. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 148-149.

Derova TG, Shishkin NV, Zhukova VE. Prevalence rate of Septoria spots in winter wheat in the Rostov region. Zhashchita I karantin rasteniy. 2015; 4: 29–30

Markelova TS. Phytosanitary situation in cereal agrocenosis of the Volga region. Zhashchita I karantin rasteniy. 2015; 5: 22–23.

Eyal Z. The Septoria/Stagonospora blotch diseases of wheat : past, present, and future. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 177-182.

Van Ginkel M, Rajaram S. Breeding for resistance to the Septoria/Stagonospora blights of wheat. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 117-126.

McDonald BA, Mundt CC, Zhan J. Population genetics of Mycosphaerella graminicola and Phaeosphaeria nodorum. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 77-82.

Shaner G. Breeding for resistance to Septoria and Stagonospora blotches in winter wheat in the United States. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 127-130.

Duveiller E. Septoria tritici blotch research. AWN. 2007; 54: 87-88.

Goodwin SB, Ponomarenko AL, Dhillon B, et al. The finished genomic sequence of the Septoria tritici blotch pathogen Mycosphaerella graminicola. Poster 26. AWN. 2007; 54: 27-28.

McIntosh RA, Hart GE, Devos KM, et al. Catalogue of gene symbols for wheat. In: Slinkard AE, ed. Proceedingsof the 9th Int. Wheat Genet. Symp.; 1998 Aug 2-7; Univ. Saskatchewan, Saskatoon; Vol. 5. P. 129.

McIntosh RA, Yamazaki Y, Devos KM. Catalogue of gene symbols for wheat [Internet]. Procedings of the 10th Internat. Wheat Genet. Symp; 2003; Paestum, Italy. CD Version, Macgene2003.

Sip V, Stuchlikova E, Chrpova J. The response of selected winter wheat cultivars to artifical infection with Septoria tritici under field conditions. Czech J. Genet. Plant Breed. 2001; 37: 73-81.

Bartos P, Sip V, Chrpova J. Achievements and prospects of wheat breeding for disease resistance. Czech J. Genet. Plant Breed. 2002; 38; 16-28.

Cowger CA, Mundt CC, Hoffer ME. Vertically resistant wheat selects for specifically adapted Mycosphaerella graminicola strains. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 85-86.

Kema GHJ, Verstappen ECP. Genetic control of avirulence in Mycosphaerella graminicola (Anamorph Septoria tritici). In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 51-52.

Brading PAA, Kema GHJ, Brown JKM. Possible gene-for-gene relationship for Septoria tritici leaf blotch resistance in wheat. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 54-55.

Brading PA, Verstappen ECP, Kema GHJ, Brown JKM. A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology. 2002; 92: 439-445.

Chartrain L, Brading PA, Makepeace JC, Brown JKM. Sources of resistance to Septoria tritici blotch and implications for wheat breeding. Plant Path. 2004; 53: 454-460.

Vechet L, Vojackova M. Resistance of wheat (Triticum aestivum) to Septoria tritici blotch (Mycosphaerella graminicola) on leaf segments. Proceedings of the 5th International Triticeae Symposium; 2005 June 6–10; Prague, Czech Republic. Czech J. Genet. Plant Breed. 2005; 41(Special Issue): 325.

Mincu M. Response of winter wheat genotypes to artificial inoculation with several Septoria tritici populations. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 167-169.

Singh PK, Mergoum M, Ali S, et al. Identification of new sources of resistance to tan spot, Stagonospora nodorum blotch, and Septoria tritici blotch of wheat. Crop Sci. 2006; 46: 2047–2053.

Plakhotnik VV, Sudnikova VP, Zeleneva YuV. Assessment of wheat breeding material for resistance to Septoria tritici in the Central Black Soil region. AGRO XXI. 2009; 7–9: 12-13.

Plakhotnik VV, Sudnikova VP, Artemova SV, Zeleneva YuV. Some issues of wheat breeding methodology for resistance to Septoria tritici in the Central Black Earth region of Russia. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 183-188.

Kovalenko ED, Bockelman H, Kolomiets TM, et al. Selection for resistance sources of wheat to the most harmful diseases for creation durable resistant cultivars. Proceedings of the 12th International Cereal Rusts and Powdery Mildews Conference; 2009 Oct 13-16; Antalya, Turkey. P. 141.

Ablova IB, Mokhova LM, Gorkovenko VS. Аблова И. Б. Polymorphism of wheat varieties in terms of resistance to Septoria tritici Rob. Ex. Desm. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 69-72.

Gilchrist L, Gomez B, Gonzalez R, et al. Septoria tritici resistance sources and breeding progress at CIMMYT, 1970-99. In: Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research Proceedings of the Fifth International Septoria Workshop; 1999 Sept 20-24; Mexico: CIMMYT; 1999. P. 134-134.

Simón MR, Ayala FM, Cordo CA, et al. The exploitation of wheat/goatgrass introgression lines for the detection of gene(s) determining resistance to septoria tritici blotch (Mycosphaerella graminicola). Euphytica. 2007; 154: 249-254.

Mukha TI. Starting material for winter wheat breeding for resistance to Septoria leaf spot in the Forest-Steppe of Ukraine. Naukovo-tekhnichnyi bul. of Mironovka Institute of Wheat nd. a V. M. Remeslo. 2001; 1: 58-61.

Kovalyshyna GM. Study results of winter wheat breeding for immunity to diseases. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2003; 4(44): 68-76.

Kyrylenko VV. Inheritance of complex resistance by leaf diseases and sedimentation index in F1 winter wheat hybrids. Naukovo-tekhnichnyi bul. of Mironovka Institute of Wheat nd. a V. M. Remeslo. 2004; 4: 19-25.

Shelepov VV, Kyrylenko VV, Lisovyi MP, et al. Study of race composition of major winter wheat pathogens and its use in breeding for immunity. Naukovo-tekhnichnyi bul. of Mironovka Institute of Wheat nd. a V. M. Remeslo. 2004; 3: 9-14.

Khomenko SO. Creation of soft winter wheat starting material resistant to powdery mildew and Septoria spot by experimental mutagenesis. Visnyk Ukrayinskogo tovarystva genetykiv i selektsioneriv. 2008; 6(2): 319-325.

Bushulyan, MA. Starting material for winter wheat breeding for resistance to Septoria (Septoria tritici Rob. ex Desm.) pathogen in the South of Ukraine [dissertation]. [Odesa, Ukraine]: Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation; 2003.

Motsnyi II, Lyfenko SF, Koval TN. Inheritance of the traits of resistance to fungal diseases by wheat distant hybrids with amphidiploids. Cytol. and Genet. 2000; 34(2): 46-56.

Characterization of winter wheat varieties bred at the Platn Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation in terms of features determining resistance-susceptibility to Septoria tritici in the Steppe of Ukraine. Nasinnytstvo. 2015; 1(144): 1–2.

Cherniaieva IM, Luchna IS, Pohurenko SG, Markova TYu. Investigation of genetic control the “resistance to Septoria tritici” trait in soft winter wheat using different evaluation techniques. Genetychni resursy Roslyn. 2009; 7: 87-98.

Leonov OYu, Zakharova NM, Streltsova IB, et al. Screening of a winter wheat collection for resistance to Septoria spot (Septoria tritici Rob. et Desm.). Plant Breeding and Seed Production. 2004; 88: 9-16.

Bennett FGA. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant Pathol. 1984; 33: 279-300.

Lebedeva, TV. Genetics of wheat resistance to powdery mildew. Identified gene pool of plants and breeding. Sankt-Peterburg: All-Union Plant Production Institute; 2005. P. 527-543.

Buda E, Uno E, Hiura K. Factors controlling nonpathogenicity of Erysiphe graminis f. sp. agropyri and Erysiphe graminis f. sp. secalis towards wheat varieties. Ann. Phytopath. Soc. Japan. 1976; 42: 85.

Last FT. Some effects of temperature and nitrogen supply on wheat powdery mildew. Ann. Appl. Biol. 1953; 2: 312-322.

Schafer, JF. Wheat powdery mildew.In: Heyne EG, editor. Wheat and wheat improvement. Madison, Wisconsin: American Society of Agronomy Inc; 1987. P. 579-584.

Te Beest DE, Paveley ND, Shaw MW, Van den Bosch F. Disease-weather relationships for powdery mildew and yellow rust on wheat. Phytopathology. 2008; 98: 609-617.

Everts KL, Leath S. Effect of early season powdery mildew on development, survival, and yield contribution of tillers of winter wheat. Phytopathology. 1992; 82: 1273-1278.

Lebedeva TV. Genetics of wheat resistance to powdery mildew. Genetics. 1994; 30(10): 1343-1351.

McIntosh RA, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia XC. Catalogue of gene symbols for wheat: 2013-14 supplement. Annual Wheat Newsletter. 2014; 60: 153-175.

Geliarna TI. Population structure of powdery mildew of wheat in different soil-climatic zones of Ukraine. Zakhyst Roslyn. 1992; 39: 18.

Boyko IA, Yarynchyn AM. Polymorphism of wheat powdery mildew pathogen races by virulence. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 131-138.

Ivanchenko VV. Virulence of wheat powdery mildew in the Eastern Forest-Steppe of Ukraine. Zakhyst Roslyn. 1999; 10: 8-9.

Babayants LT, Babayants OV, Traskovetskaia VA. Race composition of Blumeria graminis (DC.) Speer f. sp. tritici in the Steppe of Ukraine and efficiency of Pm-genes. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2004; 6(46): 269-278.

Kowalczyk K, Hsam SLK, Zeller FJ. Heterogeneity of powdery mildew resistance genes Pm2 and Pm6 in new Polish comomon wheat cultivars. European Wheat Aneuploid Co-operative Newsletter, 2006. P. 135-136.

Voluievich EA, Buloychuk AA. . Prospects for the gene pool of different cereal species as donors of soft wheat resistance to powdery mildew. In: Genetic resources of cultivated plants. Proceedings of the Inter. scient.-pract. confer.; 2001 Nov 13-16; Sankt-Peterburg: All-Russian Plant Production Institute; 2001. P. 240-241.

Bedö Z, Szunics L, Láng L, et al. Items from Hungary. Breeding. AWN. 2001; 48: 66-70.

Moldovan M, Moldovan V, Kadar R. Wheat genes resistant to rusts and powdery mildew used in controlling the dynamics of virulence in local populations of these pathogens at A.R.S. Turda. AWN. 2000; 47: 139.

Jevtic R, Telečki M, Stojanovic S, Staletić M. Virulence of Blumeria graminis tritici in Serbia (2000-2009). Proceedings of the 12th International Cereal Rusts and Powdery Mildews Conference; 2009 Oct 13-16; Antalya, Turkey; 2009. P. 94.

Alexandrov AE, Krupnov VA. Efficiency of Pm genes in the Saratov region. AWN. 2000; 47: 146.

Singrun C, Rauch P, Morgounov A, et al. Identification of powdery mildew and leaf rust resistance genes in common wheat (Triticum aestivum L.). Wheat varieties from the Caucasus, Central and Inner Asia. Genetic Resources and Crop Evolution. 2004; 51: 355-370.

Kovalyshyna. GM. Immunological aspects of the creation of winter wheat starting forms with increased resistance to fungal diseases and justification of protective measures in the Forest-Steppe of Ukraine [dissertation]. [Cabinet of Ministers of Ukraine, National University of Life and Environmental Sciences of Ukraine]: Kyiv; 2012.

Xue Fei, Duan Xiayu, Zhai Wenwen et al. Microsatellite mapping of the powdery mildew resistance gene in two Chinese landraces of wheat (Triticum aestivum L. em.Thell.) Mazhamai and Xiaobaidong. Proceedings of the 12th International Cereal Rusts and Powdery Mildews Conference; 2009 Oct 13-16; Antalya, Turkey; 2009. P. 81.

Chen Y, Chelkowski J. Genes for resistance to wheat powdery mildew. J. Appl. Genet. 1999; 40: 317-334.

Sibikeev SN, Voronina SA, Stupina NV. The resistance of new spring bread wheat-Ag. elongatum (2n = 70) lines L3026 and L3027 to leaf rust. AWN. 2000; 47: 143.

Sibikeev SN, Badaeva ED, Voronina SA, Stupina NV. Genetics and cytogenetics of new spring bread wheat-Ae. umbellulata lines. AWN. 2000; 47: 144.

Vyushkov AA, Siukov VV. Introgression of alien genetic material in soft spring wheat breeding. Problems of plant introduction and distant hybridization. In: Abstracts of the International Conference on the occasion of centenary of the birth of Academician NV Tsitsin. Moscow, 1998. P. 289-290.

Odintsova TI, Badaeva ED, Bilinskaya EN, Pukhalsky VI. Chromosome analysis and glutenin characterization in a wheat introgressive line, 224/2-96. AWN. 2000; 47: 190-191.

Maxwell JJ. Genetic characterization and mapping of wheat powdery mildew resistance genes from different wheat germplasm sources [dissertation]. [Raleigh, (North Carolina)]; 2008.

Muller G, Vahl U, Bringezu T. Stability of 1AL.1RS, 1BL.1RS wheat-rye double translocation lines. Czech J. Genet. Plant Breed. 2001; 37: 6-12.

Ben David R, Peleg Z, Saranga Y, et al. Asymmetric reciprocal virulence pattern among Blumeria graminis isolates originating from domesticated wheat and its wild progenitor. Proceedings of the 12th International Cereal Rusts and Powdery Mildews Conference; 2009 Oct 13-16; Antalya, Turkey; 2009. P. 77.

Parks R, Carbone I, Murphy JP, et al. Virulence structure of the Eastern U.S. wheat powdery mildew population. Plant Dis. 2008; 92: 1047-1082.

Dyakov YuT, Odintsova IG. Programs of creating varieties with long-lasting resistance. In: Genetic bases of plant breeding for immunity. Мoscow: Nauka; 1973. P. 115-120.

Mingeot D, Chantret N, Baret PV, et al. Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breed. 2002; 121; 133-140.

Bushnell, WR. The role of powdery mildew in understanding host-parasite interaction: Past, present, and future. In: Belanger R, Bushnell WR, Dik AJ, Caver TLW, editors. The powdery mildews. A comprehensive treatise. St. Paul Minnesota: Am. Phytopath. Soc.; 2002. P. 1-12.

Tratwal A. Variety and species mixtures as the possibility of powdery mildew (Blumeria gramionis) incidence reduction in cereals. Proceedings of the 12th International Cereal Rusts and Powdery Mildews Conference; 2009 Oct 13-16; Antalya, Turkey; 2009. P. 124.

Finckh MR, Gacek ES, Goyeau H, et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie. 2000; 20: 813–837.

Rajaram S. International wheat breeding: Past and present achievements and future directions. In: Warren E, Karow R, Reed B, editors. Kronstand Honorary Symposium; 1999 Feb 18; Corvallis, OR (USA): Oregon State University. Extension Service. 2000. P. 49-79.

Kyrylenko VV, Parfeniuk AI, Basanets GS. Creation of winter wheat lines with complex resistance to leaf diseases in the Forest-Steppe of Ukraine. Naukovo-tekhnichnyi bul. of Mironovka Institute of Wheat nd. a V. M. Remeslo. 2002; 2: 64-73.

Shelepov VV, Dubovyi VI, Kyrylenko VV et al. Creation of resistant winter wheat varieties using complex infection backgrounds of pathogens in at breeding stages. In: Lisovyi MP, Shelepov VV, editors. Kyiv: Kolobig; 2005. 20 p.

Leonov OYu. Patterns of manifestations of the “resistance” trait to powdery mildew in soft wheat gene pool accessions. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2010; 16(56): 209-211.

Babayants LT, Rybalka AI, Akselrud DV, et al. New wheat lines derived from interspecies hybridization, highly resistant to infectious agents. In: Problems of plant introduction and distant hybridization. Abstracts of the International Conference on the occasion of centenary of the birth of Academician NV Tsitsin. Moscow, 1998. P. 268-269.

Babayants LT, Rybalka AI, Babayants OV, et al. Novel starting material for wheat breeding for resistance to infectious agents. In: Wheat and triticale: Materials of the Scientific-Practical Conference "PP Lukyanenko’s Green Revolution". Krasnodar: Sov. Kuban; 2001. P. 329-337.

Babayants LT, Babayants OV. New introgressed genes of resistance to pathogens and their use in wheat bre43eding for immunity. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 12-20.

Babayants OV, Babayants LT, Traskovetskaya VA, Gorash AF, Paliasnyi VA, Vasiliev AA. Genetic determination of wheat resistance to Blumeria graminis (DS) speed f. sp. tritici, originating from Aegilops and Triticum erebuni species. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2011; 17(57): 30–40.

Sandukhadze BI, Kochetygov GV, Bugrova VV, Rybakova MI. Efficiency of winter wheat breeding in the middle of the Non-Chernozem zone of the Russian Federation. In: Wheat and triticale: Materials of the Scientific-Practical Conference "PP Lukyanenko’s Green Revolution". Krasnodar: Sov. Kuban; 2001. P. 186-192.

Retman, SV. Spot diseases of winter wheat. Kyiv: Kolobig; 2010. 232 p.

Rees RG, Platz GJ. Effects of yellow spot on wheat: Comparison of epidemics at different stages of crop development. Aust. J. Agric. Res. 1983; 34: 39–46.

Ciuffetti LM, Tuori RP. Advances in the characterization of the Pyrenophora tritici-repentis–wheat interaction. Phytopathology. 1999; 89: 444-449.

Dreschler C. Some graminicolous species of Helminthosporium I. J. Agric. Res. 1923; 24: 641-740.

Retman SV. Phytopathogenic complex of winter wheat in the Forest-Steppe of Ukraine. Karantyn i zakhyst roslyn. 2008; 4: 5.

Rudakov OL. Tan spot of winter wheat. Zashchita rasteniy. 1985; 10: 28-29.

Bockus WW, Claasen MM. Effects of crop rotation and residue management practices on severity of tan spot of winter wheat. Plant Disease. 1992; 76: 633–636.

Ali S, Francl LJ. Population race structure of Pyrenophora tritici-repentis prevalent on wheat and noncereal grasses in the Great Plains. Plant Dis. 2003; 87: 418-422.

Bergstrom GC, Schilder MC. Seed pathology of tan spot. In: Helminthosporium blights of wheat: spot blotch and tan spot. Duveiller E, Dubin HJ, Reeves J, McNab A, editors. Mexico: CIMMYT D.F; 1998. P. 364-368.

McMullen MP, Leonard Franc L. Tan spot of wheat [Internet]. North Dakota State University of Agriculture and Applied Science. PP-766 (Revised). [January 1993]. Available from: http://www.ag.ndsu.edu/pubs/plantsci/smgrains/pp766w.htm.

Kohli MM, Mehta YR, De Ackermann MD Spread of tan spot in the southern cone region of South America. In: Advances in Tan Spot Research. Proc. Int. Tan Spot Workshop, 2nd. Francl LJ, Krupinsky JM, McMuller MP, editors. N.D. Agric. Exp. Stn., Fargo; 1992. P. 86-90.

Singh DP. First report of tan spot of wheat caused by Pyrenophora triticirepentis in the Northern Hills and Northwestern Plains Zones of India. Plant Disease. 2007; 91: 460.

Ali S, Francl LJ, Iram S, Ahmad I. First report of tan spot on wheat in Pakistan. Plant Disease. 2001; 85: 1031.

Loughman R, Wilson RE, Roake JE, et al. Crop management and breeding for control of Pyrenophora tritici-repentis causing yellow spot of wheat in Australia. In: Helminthosporium Blights of Wheat: Spot Blotch and Tan Spot. Duveiller E, Dubin HJ, Reeves J, McNab A, editors. Mexico: CIMMYT, D.F.; 1998. P. 10-17.

Bakonyi J, Aponyi I, Fischl G. Diseases caused by Bipolaris sorokiniana and Drechslera tritici-repentis in Hungary. In: Helminthosporium Blights of Wheat: Spot Blotch and Tan Spot. Duveiller E, Dubin HJ, Reeves J, McNab A, editors. Mexico: El Batan; 1998. P. 80–87.

Palicová-Šárová J, Hanzalová A. Reaction of 50 winter wheat cultivars grown in the Czech Republic to Pyrenophora tritici-repentis races 1, 3, and 6. Czech J. Genet. Plant Breed. 2006; 42 (2): 31–37.

Smurova SG, Kovalenko NM, Chikida NN, Mikhaylova LA. Characterization of resistance of Aegilops L. species to yellow and brown leaf spots. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 109-113.

Volkova GV, Andronova AE, Kremneva OYu. Dynamics of major spot pathogens of winter wheat in areas of the North Caucasus differing by ecoresources. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 48-51.

Lamari L, Bernier CC. Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora tritici-repentis. Phytopathology. 1991; 81: 1092-1095.

Tomás A, Bockus WW. Cultivar-specific toxicity of culture filtrates of Pyrenophora tritici-repentis. Phytopathology. 1987; 77: 1337-1340.

Friesen TL, Ali S, Kianian S, et al. Role of host sensitivity to Ptr ToxA in development of tan spot of wheat. Phytopathology. 2003; 93: 397–401.

Tuori RP, Wolpert TJ, Ciuffetti LM. Purification and immunological characterization of toxin components from cultures of Pyrenophora tritici-repentis. Mol. Plant-Microbe Interact. 1995; 8: 41-48.

Effertz RJ, Meinhardt SW, Anderson JA, et al. Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology. 2002; 92: 527-533.

Friesen TL, Ali S, Klein KK, Rasmussen JB. Population genetic analysis of a global collection of Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Phytopathology. 2005; 95: 1144-1150.

Mykhaylova LA, Terniuk IG, Myronenko NV, Novozhylov KV. Characterization of Pyrenophora tritici-repentis populations in terms of virulence. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 84-93.

Šárová J, Hanzalová A. Pyrenophora tritici-repentis - an important wheat leaf spot pathogen in the Czech Republic. European Wheat Aneuploid Co-operative Newsletter. Proceedings of the 13th International EWAC Conference; 2005 27 June–1 July; Prague, Czech Republic; 2005. P. 136-138.

Riede CR, Francl LJ, Anderson JA, et al. Additional source of resistance to tan spot of wheat. Crop Sci. 1996; 36: 771–777.

Rees RG, Platz GJ. Sources of resistance to Pyrenophora tritici-repentis in bread wheats. Euphytica. 1990; 45: 59–69.

Lamari L, McCallum BD, DePauw RM. Forensic pathology of Canadian bread wheat: The case of tan spot. Phytopathology. 2005; 95: 144-152.

Xu SS, Friesen TL, Mujeeb-Kazi A. Seedling resistance to tan spot and Stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Sci. 2004; 44: 2238–2245.

Brown‐Guedira GL, Cox TS, Bockus WW, et al. Registration of KS96WGRC38 and KS96WGRC39 tan spot-resistant hard red winter wheat germplasms. Crop Sci. 1999; 39: 596.

Leonov OYu. Monitoring of resistance to tan spot among modern bread wheat varieties and lines. Visnyk Tsentru naukovogo zabezpechennia APV Kharkivskoy] oblasti. 2011; 10: 133-143.

Chester, KS. The nature and prevention of the cereal rusts as exemplified in the leaf rust of wheat. Waltham, MA: Chronica Botanica; 1946.

Ismaylov, KhA. Studies on wheat immunity to diseases in Azerbaijan. Baku: Elm; 1988. 148 p.

Kislev ME. Stem rust of wheat 3300 years old found in Israel. Science. 1982; 216: 993-994.

D’Oliveira BD, Samborski DJ. Aecial stage of Puccinia recondita on ranunculaceae and boraginaceae in Portugal. In: Proceedings of the first European Brown Rust Conference. Macer RC, Wolfe MS, editors. Cambridge, UK; 1966. P. 133–150.

Tozzetti GT, Alimurgia V. True nature, causes and sad effects of the rusts, the bunts, the smuts, and other maladies of wheat and oats in the field. Phytopathological Classics No.9. St. Paul, Minnesota: Am. Phytopathol. Soc.; 1952 (originally published 1767). 139 p.

Fontana F, Pirone PP. Observations on the rust of grain. Classics No. 2. Washington, D.C.: Am. Phytopathol. Soc.; 1932 (Originally published in 1767).

Tulasne LR, Tulasne Ch. Memoire sur les Ustilaginess comparees aux Uridiness. Ann. sci natur. Ser. 3. 1847; 7: 12-127.

Yachevskiy AA. Rust of bread cereals in Russia. In: Proceedings of the Mycology and Plant Phytopathology Bureau, # 4. Sankt-Peterburg, 1909. 187 p.

Mikhaylova, LA. Wheat resistance to brown rust. In: Identified gene pool of plants and breeding. Sankt-Peterburg: All-Pussian Plant Production Institute; 2005. P. 513-527.

Andreiev LN, Plotnikova YuM. Wheat rust: cytology and physiology. Moscow: Nauka; 1989. 304 p.

Roelfs AP, Singh RP, Saari EE. Rust diseases of wheat: concepts and methods of disease management. Mexico, D.F.: CIMMYT; 1992. 81 p.

Kolmer JA, Ordoñez ME. Genetic differentiation of Puccinia triticina populations in Central Asia and the Caucasus. Phytopathology. 2007; 97: 1141-1149.

Babayants OV, Babayants LT. Basics of breeding and methods for assessments of wheat resistance to pathogens. Odesa: VMV; 2014. 401 p.

Voronkova, AA. Genetic and immunological principles of wheat breeding for resistance to rust. Moscow: Kolos; 1980. 192 p.

Smale M, Singh RP, Sayre K, et al. Estimating the economic impact of breeding nonspecific resistance to leaf rust in modern bread wheats. Plant Dis. 1998; 82: 1055-1061.

Kolmer JA, Long DL, Hughes ME. Physiologic specialization of Puccinia triticina on wheat in the United States in 2004. Plant Dis. 2006; 90: 1219-1224.

Bolton MD, Kolmer JA, Garvin DF. Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology. 2008; 9(5): 563–575.

Krattinger SG, Lagudah ES, Spielmeyer W, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009; 323(5919): 1360–1363.

Karelov AV, Kozub NO, Sozinov IO, Sozinov OO, Likar SP, Blium YaB. Characterization of Ukrainian wheat varieties (Triticum aestivum) using the latest molecular markers – genes of moderate resistance to rust fungi. Zakhyst i karantyn roslyn. 2013; 59: 128– 136.

Khan MA, Saini RG. Non-hypersensitive leaf rust resistance of bread wheat cultivar PBW65 conditioned by genes different from Lr34. Czech J. Genet. Plant Breed. 2009; 45(1): 26–30.

Hanzalová A, Bartoš P. Physiologic specialization of wheat leaf rust (Puccinia triticina Eriks.) in the Czech Republic in 2001–2004. Czech J. Genet. Plant Breed. 2006; 42(4): 126–131.

Putnik-Deliс MI. Resistance to Puccinia triticina at different stages of wheat. Proc. Nat. Sci, Matica Srpska Novi Sad. 2009; 116: 183-190.

McIntosh RA, Wellings CR, Park RF. Wheat rusts: an atlas of resistance genes. CSIRO Australia, Kluwer Academic Publishers; Dordrecht, Netherlands; 1995. 196 p.

Lesovaya GM, Sozinov IA. Resistance of near-isogenic winter wheat lines to pathogenic Puccinia recondita f. sp. Tritici races differing by virulence. Cytol. And Genetics. 1999; 33(5): 52-57.

Pantelyeev VK. Wheat leaf rust. Virulence of pathogen eciopopulations on plants - intermediate feeders in the Eastern Forest-Steppe. Zakhyst Roslyn. 2000; 2: 5-7.

Pantelyeev VK. Wheat Resistance genes. Efficiency against leaf rust. Zakhyst Roslyn. 2000; 7: 5-7.

Babayants LT, Babayants OV, Vasiliev AA, Traskovetskaya VA. Puccinia recondita Rob. ex. Desm. f. sp. tritici race composition in the Steppe of Ukraine and wheat variety resistance. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2004; 6(46): 279-288.

Babayants OV, Vasiliev AA, Zalogina-Kyrkelan MA. Puccinia recondita Rob. ex. Desm. f. sp. tritici race composition in the South of Ukraine in 2004-2007. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 94-101.

Kovalyshyna GM, Marusuch GP. Genetic control of resistance to leaf rust in winter wheat varieties. Naukovo-tekhnichnyiy bulleten Myronivskogo instytutu pshenytsi. 2004; 3: 15-20.

Lisova GM, Sozinov OO. Effective wheat genes of resistance to brown rust pathogen and race composition of the pathogen population as of 1998. Agroekologia I biotekhnologia. 1998; 2: 245-253.

Kovalyshyna GM. Genetic diversity of winter wheat varieties in terms of resistance to brown rust. Zakhyst I karantyn Roslyn. 2013; 59: 137–146.

Lisoviy MP, Pavliuchyk OP. Virulence of the wheat brown rust pathogen population. Visnyk agrarnoyi nauky. 2004; 1: 22-24.

Hanzalová A, Sumíková T, Bartoš P. Determination of leaf rust resistance genes Lr10, Lr26 and Lr37 by molecular markers in wheat cultivars registered in the Czech Republic. Czech J. Genet. Plant Breed. 2009; 45(2): 79–84.

Volkova GV, Anpilogova LK. Methods of control of populations of wheat brown and yellow rust pathogens in Southern Russia. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 41-47.

Alfimov VA, Bespalova LA, Puzyrnaya OYu. Resistance of winter wheat varieties in relation to changes in race composition of brown rust population in the Krasnodar region. In: Wheat and triticale: Materials of the Scientific-Practical Conference "PP Lukyanenko’s Green Revolution". Krasnodar: Sov. Kuban; 2001. P. 306-317.

Gultyaeva E, Baranova O, Alpatyeva N, Krämer I. Occurrence of leaf rust resistance genes in Russian wheat varieties and their influence on virulence frequencies in the pathogen population. Proceedings of the 12th International cereal rusts and powdery mildews conference: abstract book; 2009 Oct 13-16; Antalya, Turkey; 2009. P. 89.

Zelenskiy Y, Morgounov A, Manes Y et al. Improvement of leaf rust resistance of spring bread wheat in the North Kazakhstan. Proceedings of the 12th International cereal rusts and powdery mildews conference: abstract book; 2009 Oct 13-16; Antalya, Turkey; 2009. P. 147.

Kolmer JA. Physiologic specialization of Puccinia triticina in Canada in 1998. Plant Dis. 2001; 85: 155-158.

Watkins JE, Schimelfenig J, Baenziger PS, Eskridge KM. Virulence of Puccinia triticina on wheat in Nebraska during 1997 and 1998. Plant Dis. 2001; 85: 159-164.

Long DL, Kolmer JA. A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology. 1989; 79: 525-529.

Kiselieva MI, Zhemchuzhyna NS, Liubich VV. Resistance to brown rust of winter wheat varieties cultivated in the Right-Bank Forest-Steppe of Ukraine. Zashchita I karantin rasteniy. 2015; 4: 45–47.

Babayants JV, Babayants LT, Gorash AF, Vasiliev AA, Traskovetskaya VA, Paliasniy VA. Genetic determination of wheat resistance to brown leaf rust (Puccinia recondita Rob. ex. Desm. f. sp. Tritici) derived from aegilops cylindrica, triticum erebuni, Amphidiploids 4. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2010; 16(56): 185–202.

Lytvynenko MA, Topal MM. Breeding value of translocation 1AL / 1RS for resistance to brown and stem rusts in the South of Ukraine. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2014; 24(64): 85–94.

Davoyan RO, Bebiakina IV, Davoyan ER, Bibishev VA. Use of synthetic forms for transmission of disease resistance to common wheat from its relatives. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11 (51): 60-68.

Gill BS, Friebe B, Raupp WJ et al. Wheat genetics resource center: the first 25 years. Advances in Agronomy. 2006; 89: 74-137.

Kuraparthy V, Sood S, Chhuneja P et al. A cryptic wheat–aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci. 2007; 47: 1995-2003.

Leonov, OYu. Theoretical basics of using soft wheat genetic resources in breeding [dissertation]. [Plant Production Institute nd. A VYa Yuriev, (Ukraine)]: Kharkiv; 2012.

Markova TYu, Cherniaieva IM, Petrenkova VP. Wheat mite (Aceria tritici) - a dangerous carrier of wheat streak mosaic virus. Agronom. 2013; 1(39): 84–85.

Shpaar D, Fux E, Rabenshtayn F. Viral diseases of cereal and fodder crops in Germany - epidemiology, economic importance and measures to fight them. Agroekologichniy zhurnal. 2002; Special issue: 15–21.

Yukhymenko AI, Girko VS. Selection for tolerance to wheat streak mosaic virus. Visnyk Kyivskogo Nat. Univer. Series Biology. 2011; 35: 23–25.

Mishchenko, LT. Viral diseases of winter wheat. Kyiv: Fitosotsiotsentr; 2009. 352 p.

Abbott DA, Wang MB, Waterhouse P. Single copy of virus-derived, transgene-encoding hairpin RNA confers BYDV immunity. In: M. Henry, A. McNab, editors. Barley yellow dwarf disease: recent advances and future strategies. Mexico, D.F.: CIMMYT; 2002. P. 22-26.

Lister RM, Ranieri R. Distribution and economic importance of barley yellow dwarf. In: Barley yellow dwarf: 40 years of progress. D’Arcy CJ, Burnett PA, editors. St. Paul, MN: American Phytopathological Society; 1995. P. 29-53.

Omelchenko LI. Viral infections of cereals. Visnyk agrarnoyi nauky. 1995; 10: 19-25.

Mozhaeva KA, Kastalyeva TB. Barley yellow dwarf in Russia. In: Henry M, McNab A, editors. Barley yellow dwarf disease: recent advances and future strategies. Mexico, D.F.: CIMMYT; 2002. P. 120-122.

Van Ginkel M, Henry M. Breeding for BYDV tolerance/resistance in CIMMYT bread wheats targeted to developing countries. In: Henry M, McNab A, tditors. Barley yellow dwarf disease: recent advances and future strategies. Mexico, D.F.: CIMMYT; 2002. P. 93-96.

Polishchuk VP, Budzanivska IG, Ryzhuk SM et al. Monitoring of viral infections of plants in biocenoses of Ukraine. In: Polishchuk VP, editor. Kyiv: Fitosotsiotsentr; 2001. 220 p.

Nikolenko MP, Dutko VP, Omelchenko LI. Aphids - carriers of barley yellow dwarf. Zashchita rasteniy. 1975; 7: 18-19.

Nikolenko MP, Omelchenko LI. Peculiarities of barley yellow dwarf virus epiphytotics and possibilities of preventing winter wheat, barley and triticale yield loss. Selskokhoziaystvennaya biology. 1985; 8: 63-68.

Guo JQ, Moreau JP, Lapierre H. Variability among aphid clones of Rhopalosiphum padi L. and Sitobion avenae Fabr. (Homoptera: aphididae) in transmission of three PAV isolates of barley yellow dwarf viruses. Canadian Entomologist. 1996; 128: 209-217.

Smyrnioudis IN, Harrington R, Katis N, Clark SJ. The effect of drought stress and temperature on spread of barley yellow dwarf virus (BYDV). Agricultural and Forest Entomology. 2000; 3: 161-166.

Lucio-Zavaleta E, Smith DM, Gray SM. Variation in transmission efficiency among barley yellow dwarf virus-RMV isolates and clones of the normally inefficient aphid vector, Rhopalosiphum padi. Phytopathology. 2001; 91: 792-796.

Harrington R. BYDV: the heat is on. In: Henry M, McNab A, editors. Barley yellow dwarf disease: recent advances and future strategies. Mexico, D.F.: CIMMYT; 2002. P. 34-39.

Cheng Z, Wu M, He X et al.]Nucleotide sequence analysis of the BYDV-GPV isolate genome, and transgenic wheat obtained via pollen tube pathway. In: Henry M, McNab A, editors. Barley yellow dwarf disease: recent advances and future strategies. Mexico, D.F.: CIMMYT; 2002. P. 29-31.

Sharma HC, Ohm H, Perry KL. Registration of barley yellow dwarf virus resistant germplasm line P29. Crop Sci. 1997; 37: 1032-1033.

Larkin PJ, Kleven S, Banks PM. Utilizing Bdv2, the Thinopyrum intermedium Source of BYDV resistance, to develop wheat cultivars. In: Henry M, McNab A, editors. Barley yellow dwarf disease: recent advances and future strategies. Mexico, D.F.: CIMMYT; 2002. P. 60-63.

Henry M, Posadas G, Segura J, Rajaram S. Evaluating resistance to BYDV-PAV, BYDV-MAV, and CYDV-RPV in Thinopyrum intermedium-derived wheat lines. In: Henry M, McNab A, editors. Barley yellow dwarf disease: recent advances and future strategies. Mexico, D.F.: CIMMYT; 2002. P. 64-66.

Comeau A, Haber S. Breeding for BYDV tolerance in wheat as abasis for a multiple stress tolerance strategy. In: Henry M, McNab A, editors. Barley yellow dwarf disease: recent advances and future strategies. Mexico, D.F.: CIMMYT; 2002. P. 82-92.

Babayznts ov, Neplyy LV. Affection of winter wheat by barley yellow dwarf virus (BYDV) in the South of Ukraine. Zbirnyk naukovykh Prats of Plant Breeding and Genetics Institute – National Center of Seeds and Cultivar Investigation. 2008; 11(51): 32-40.

##submission.downloads##

Опубліковано

2016-06-22

Номер

Розділ

МЕТОДИ І РЕЗУЛЬТАТИ СЕЛЕКЦІЇ