Изображение профиля

Fengshan Liu

Fengshan Liu
National Research Council, Канада

Scopus Profile: http://www.scopus.com/authid/detail.url?authorId=55493554300

Profile Google Scholar: http://scholar.google.com/citations?user=LDB4AkUAAAAJ&hl=ru

Professional (scientific) interests

Soot formation modelling; Soot diagnostics; Radiative heat transfer; Radiative properties of fractal aggregates; Laminar flames; Measurements of engine particulate emissions

Qualifications

1991  Ph.D., Combustion Engineering, University of Sheffield, United Kingdom
1986  B.Sc., Mechanical Engineering, Tsinghua University, China

 Publications (Selected)

1. Liu, F., Smallwood G. J., “The effect of particle aggregation on the absorption and scattering properties mono- and polydisperse soot aggregates,” to appear in Applied Physics B, Sept. 2010. 

2.  Liu, F., He, X., Ma, X., Zhang Q., Thomson, M. J., Guo, H., Smallwood, G. J., Shuai, S., Wang, J., “An experimental and numerical study of the effects of dimenthyl ether addition to fuel on polycyclic aromatic hydrocarbon and soot formation in laminar cofllow ethylene/air diffusion flames,” Combustion and Flame, available on line, 2010.

3. Liu, F., Smallwood, G. J., “Control of the structure of sooting characteristics of a coflow laminar methane/air diffusion flame using a central jet: an experimental and numerical study,” Proceedings of the Combustion Institute, Vol. 33, in press, 2010.

4. Liu, F., Smallwood, G. J., Kong, W., “The importance of thermal radiation transfer in laminar diffusion flames at normal and microgravity,” Journal of Quantitative Spectroscopy and Radiative Transfer, available online. 2010.

5. Porter, R., Liu, F., Pourkashanian, M., Williams, A., Smith, D., “Evaluation of solution methods for radiative heat transfer in gaseous oxy-fuel combustion environments,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 111, pp. 2084-2094, 2010.

6. Zhang, Q., Thomson, M. J., Guo, H., Liu, F., and Smallwood, G. J., “Modeling of oxidation-driven soot aggregate fragmentation in a laminar coflow diffusion flames,” Combust. Sci. and Tech., Vol. 182, pp. 491-504, 2010.

7. Liu, F., Smallwood, G. J., “Radiative Properties of Numerically Generated Fractal Soot Aggregates: the Importance of Configuration Averaging,” ASME J. Heat Transfer, Vol. 132, 023308-1 - 023308-6, 2010.

8. Liu, F., Smallwood, G. J., “Effect of Aggregation on the Absorption Cross Section of Fractal Soot Aggregates and Its Impact on LII Modelling,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 111, pp. 302-308, 2010.

9. Kong, W., Liu, F., “Numerical Study of the Effects of Gravity on Soot Formation in Laminar Coflow Methane/Air Diffusion Flames under Different Air Stream Velocities,” Combustion Theory and Modelling, Vol. 13, pp. 993-1023, 2009.

10. Kong, W., Liu, F., “Effects of gravity on soot formation in a coflow laminar methane/air diffusion flame,” Microgravity Science and Technology, doi:10.1007/s12217-009-9175-z, 2009.

11. Snelling, D. R., Thomson, K. A., Smallwood, G. J., and Liu, F., “Comparison of LII Derived Soot Temperature Measurements with LII Model Predictions for Soot in a Laminar Diffusion Flame,” Applied Physics B, 96, pp. 657-669, 2009.

12. Liu, F., Thomson, K. A., Smallwood, G. J., “Numerical Investigation of the Effects of Signal Trapping on Soot Measurements Using LII in Laminar Coflow Diffusion Flames,” Applied Physics B, 96, pp. 671-682, 2009.

13. Liu, F., Snelling, D. R., Thomson, K. A., and Smallwood, G. J., “Sensitivity and Relative Error Analysis of Soot Temperature and Volume Fraction Determined by Two-Color LII,” Applied Physics B, 96, pp. 623-636, 2009.

14. Daun, K. J., Smallwood, G. J., Liu, F., “Molecular Dynamics Simulations of Translational Thermal Accommodation Coefficients for Time-Resolved LII,” Applied Physics B, 96, pp. 39-49, 2009.

15. Zhang, Q.A., Guo, H., Liu, F., Smallwood, G.J., Thomson, M.J., “Modeling of soot aggregate formation and size distribution in an laminar ethylene/air coflow diffusion flame with PAH chemistry and an advanced sectional aerosol dynamics model”, Proceedings of the Combustion Institute 32, 761–768, 2009.

16. Zhang, Q., Thomson, M. J., Guo, H., Liu, F., and Smallwood, G. J., “A Numerical Study of Soot Aggregate Formation in a Laminar Coflow Diffusion Flame,” Combustion and Flame, Vol. 156, pp. 697-705, 2009.

17. Daun, K. J., Smallwood, G. J., and Liu, F., 2008, “Molecular Dynamics Simulations of Translational Thermal Accommodation Coefficients for Time-Resolved LII,” Applied Physics B, 94, pp. 39-49.

18. Boulanger, J., Neill, W. S., Liu, F., Smallwood, G. J., “An Improved Phenomenological Soot Formation Submodel for Three-Dimensional Diesel Engine Simulations: Extension to Agglomeration of Particles into Clusters,” J. Eng. Gas Turbines Powers, Vol. 130, 062808-1/062808-6, 2008.

19. Daun, K. J., Smallwood, G. J., Liu, F., “Investigation of Thermal Accommodation Coefficients in Time-Resolved Laser-Induced Incandescence,” ASME J. Heat Transfer, Vol. 130, 121201-1/121201-9, 2008.

20. Daun, K. J. Thomson, K. A., Liu, F., “Simulation of Laser Induced Incandescence Measurements in an Anisotropically Scattering Aerosol through Backwards Monte Carlo,” ASME J. Heat Transfer, Vol. 130, 112701-1/112701-10, 2008.

21. Zhang, Q., Guo, H., Liu, F., Smallwood, G. J., and Thomson, M. J., “Implementation of an advanced fixed sectional aerosol dynamics model with soot aggregate formation in a laminar methane/air coflow diffusion flame,” Combustion Theory and Modelling, Vol. 12, pp. 621-641, 2008.

22. Liu, F., Gülder, Ö. L., “Effects of Pressure and Preheat on Super-Adiabatic Flame Temperatures in Rich Premixed Methane/Air Flames,” Combust. Sci. Tech., Vol. 180, Issue 3, pp. 437-452, 2008.

23. Liu, F., Thomson, K. A., Smallwood, G. J., “Effects of Soot Absorption and Scattering on LII Intensities in Laminar Coflow Diffusion Flames,” JQSRT, Vol. 109, pp. 337-348, 2007. 24. Liu, F., Snelling, D. R., “The Unsteady-State Energy Conservation Equation for a Small Spherical Particle in LII Modeling,” Appl. Phys. B, Vol. 89, pp. 115-121, 2007.

24. Boulanger, J., Neill, W. S., Liu, F., Smallwood, G. J., “Investigating Renewable Fuel Combustion I: Comparative Simulations of a Diesel Engine Fulled with n-c12 Alkane and n-c18 Fatty Acid-Derived Liquid-Property Fuel,” Int. J. Env. Studies, Vol. 64, No. 4, pp. 401-418, 2007.

25. Boulanger, J., Liu, F., Neill, W. S., Smallwood, G. J., “Investigating Renewable Fuel Combustion II: DME and n-Heptane Ignition in a Turbulent Non-Homogeneous Flow with High Dissipation,” Int. J. Env. Studies, Vol. 64, No. 4, pp. 419-432, 2007.

26. Boulanger, J., Liu, F., Neill, W. S., Smallwood, G. J., “An Improved Soot Formation Model for 3D Diesel Engine Simulations,” J. Eng. Gas Turbines Powers, Vol. 129, pp. 877-884, 2007.

27. Daun, K. J., Stagg, B. J., Liu, F., Smallwood, G. J., Snelling, D. R., “Determining Aerosol Particle Size Distributions Using Time-Resolved Laser-Induced Incandescence,” Applied Physics B, Vol. 87, No. 2, pp. 363-372, 2007.

28. Michelsen, H. A., Liu, F., Kock, B. F., Bladh, H., Boiarciuc, A., Charwath, M., Dreier, T., Hadef, R., Hofmann, M., Reimann, J., Will, S., Bengtsson, P.-E., Bockhorn, H., Foucher, F., Geigle, K.-P., Mounaïm-Rousselle, C., Schulz, C., Stirn, R., Tribalet, B., Suntz, R., “Modeling Laser-Induced Incandescence of Soot: A Summary and Comparison of LII Models,” Applied Physics B, Vol. 87, No. 3, pp. 503-521, 2007.