Natalia Semenova

Natalia Semenova
V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Ukraine

Doctor of Physical and Mathematical Sciences, Senior Research Fellow, Senior Research Fellow

Department of methods of discrete optimization, mathematical modeling and analysis of the complex systems

 

Scopus profile: link

GoogleScholar profile: link

ID ORCID: http://orcid.org/0000-0002-5442-5413

Professional (scientific) interests: theory and methods of discrete optimization, the mathematical models and methods of decision of discrete optimization problems on conditions of uncertainty and of control of data, vector problems  of combinatorial optimization, analysis of well-posedness of vector discrete optimization problems 

 

Selected Publications:

1. Lebedeva, T. T., Semenova, N. V., Sergienko, T. I. (2014). Properties of Perturbed Cones Ordering the Set of Feasible Solutions of Vector Optimization Problem1. Cybernetics and Systems Analysis, 50 (5), 712–717. doi: http://doi.org/10.1007/s10559-014-9661-1 

2. Lebedeva, T. T., Semenova, N. V., Sergienko, T. I. (2014). Qualitative Characteristics of the Stability Vector Discrete Optimization Problems with Different Optimality Principles. Cybernetics and Systems Analysis, 50 (2), 228–233. doi: http://doi.org/10.1007/s10559-014-9609-5 

3. Emelichev, V. A., Kotov, V. M., Kuzmin, K. G., Lebedeva, T. T., Semenova, N. V., Sergienko, T. I. (2014). Stability and Effective Algorithms for Solving Multiobjective Discrete Optimization Problems with Incomplete Information. Journal of Automation and Information Sciences, 46 (2), 27–41. doi: http://doi.org/10.1615/jautomatinfscien.v46.i2.30 

4. Semenova, N. V., Kolechkina, L. N., Nagirna, A. M. (2011). Vector optimization problems with linear criteria over a fuzzy combinatorial set of alternatives. Cybernetics and Systems Analysis, 47 (2), 250–259. doi: http://doi.org/10.1007/s10559-011-9307-5 

5. Semenova, N. V., Kolechkina, L. N., Nagornaya, A. N. (2010). One Approach to Solving Vector Problems with Fractionally Linear Functions of the Criteria on the Combinatorial Set of Arrangements. Journal of Automation and Information Sciences, 42 (2), 67–80. doi: http://doi.org/10.1615/jautomatinfscien.v42.i2.50 

6. Semenova, N. V., Kolechkina, L. N. (2009). A polyhedral approach to solving multicriterion combinatorial optimization problems over sets of polyarrangements. Cybernetics and Systems Analysis, 45 (3), 438–445. doi: http://doi.org/10.1007/s10559-009-9110-8 

7. Semenova, N. V., Kolechkina, L. N., Nagornaya, A. N. (2008). Solution and Investigation of Vector Problems of Combinatorial Optimization on a Set of Polypermutations. Journal of Automation and Information Sciences, 40 (12), 27–42. doi: http://doi.org/10.1615/jautomatinfscien.v40.i12.30