DOI: https://doi.org/10.15587/2313-8416.2017.107547

Development of the computer program of the model of Poinsot's rotation of the object with a fixed point

Leonid Kutsenko, Leonid Zapolsky

Abstract


A maple program for interpreting the Poinsot’s rotation of an object with a fixed point (Euler problem) is developed. In the computer animation mode, a graphical rolling model is obtained without sliding the ellipsoid of inertia of this object along one of its tangent planes. As a result, an image of the herpolhode is constructed on the tangent plane, and on the surface of the ellipsoid - it corresponds to the polhode


Keywords


Poinsot’s interpretation; moment of inertia; inertia ellipsoid; rolling of an ellipsoid; polhode; herpolhode

References


Buchholz, N. N. (1972). The basic course of theoretical mechanics: Part 2. Moscow: Science, 332.

Markeev, A. P. (1990). Theoretical mechanics. Moscow: Science, 416.

Rouse, E. J. (1983). Dynamics of systems of solids. Vol. 2. Moscow: Science, 544.

Golubev, Yu. F. (2000). Fundamentals of theoretical mechanics. Moscow: Izd-vo MGU, 719.

Sivukhin, D. V. (1979). General course of physics. Vol. 1. Mechanics. Moscow: Science, 520.

Berezkin, E. N. (1974). Course of Theoretical Mechanics. Moscow: Izd-vo MGU, 646.

Wittenburg, I. (1980). Dynamics of a system of solids. Moscow: World, 292.

Saranchin, A. I., Corkishko, S. V. (2013). Solution of the Euler equations for a free gyroscope. Bulletin of the Maritime State University. Series: History of marine science, technology and education, 61/2013, 47–69.

Program rolling of ellipsoid in package MATHEMATICA. Available at: https://mathematica.stackexchange.com/questions/23297/how-can-i-simulate-a-pot-lid-rotating-around-an-axis-that-is-quickly-rotating

Savransky, D. Poinsot Construction. Available at: https://www.mathworks.com/matlabcentral/fileexchange/61433-poinsot-construction? focused=7212431&tab=function

Free Rotation of a Rigid Body: Poinsot Constructions. Available at: http://demonstrations.wolfram.com/FreeRotationOfARigidBodyPoinsotConstructions/

D Rigid Body Simulation Instructions. Available at: http://ialms.net/sim/3d-rigid-body-simulation/

Poinsot's construction. Polhode. Available at: https://www.youtube.com/watch?v=BwYFT3T5uIw


GOST Style Citations


Бухгольц, Н. Н. Основной курс теоретической механики: часть 2 [Текст] / Н. Н. Бухгольц. – М.: Наука, 1972. – 332 с.

Маркеев, А. П. Теоретическая механика [Текст] / А. П. Маркеев. – М.: Наука, 1990. – 416 с.

Раус, Э. Дж. Динамика систем твердых тел. T. 2. [Текст] / Э. Дж. Раус. – М.: Наука, 1983. – 544 с.

Голубев, Ю. Ф. Основы теоретической механики [Текст] / Ю. Ф. Голубев. – М.: Изд-во МГУ, 2000. – 719 с.

Сивухин, Д. В. Общий курс физики. Т. 1. Механика [Текст] / Д. В. Сивухин. – M.: Наука, 1979. – 520 с.

Березкин, Е. Н. Курс теоретической механики [Текст] / Е. Н. Березкин. – M.: Изд-во МГУ, 1974. – 646 с.

Виттенбург, И. Динамика системы твердых тел [Текст] / И. Виттенбург. – М.: Мир, 1980. – 292 с.

Саранчин, А. И. Решение уравнений Эйлера для свободного гироскопа [Текст] / А. И. Саранчин, С. В. Коркишко // Вестник Морского государственного университета. Серия: История морской науки, техники и образования. – 2013. – № 61/2013. – С. 47–69.

Програма кочення еліпсоїда мовою пакету MATHEMATICA [Електронний ресурс]. – Режим доступу: https://mathematica.stackexchange.com/questions/23297/how-can-i-simulate-a-pot-lid-rotating-around-an-axis-that-is-quickly-rotating

Savransky, D. Poinsot Construction [Electronic resource] / D. Savransky. – Available at: https://www.mathworks.com/matlabcentral/fileexchange/61433-poinsot-construction? focused=7212431&tab=function

Free Rotation of a Rigid Body: Poinsot Constructions [Electronic resource]. – Available at: http://demonstrations.wolfram.com/FreeRotationOfARigidBodyPoinsotConstructions/

3D Rigid Body Simulation Instructions [Electronic resource]. – Available at: http://ialms.net/sim/3d-rigid-body-simulation/

Poinsot's construction. Polhode [Electronic resource]. – Available at: https://www.youtube.com/watch?v=BwYFT3T5uIw







Copyright (c) 2017 Leonid Kutsenko, Leonid Zapolsky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)