Approximation analysis of measurement of heat flow bomb calorimeter in non-stationary mode

Authors

DOI:

https://doi.org/10.15587/2313-8416.2017.108935

Keywords:

bomb calorimeter, heat of fuel combustion, interpolation functions, determination coefficient

Abstract

The principle of functioning of a bomb calorimeter and methods of determining the heat of fuel combustion are studied. Experimental studies are conducted to determine the heat of combustion of wooden pellets. Based on the conducted studies, potential zones for reducing the time of establishing the results of measuring the bomb calorimeter are shown. The method of reducing the measuring time of heat of fuel combustion is proposed and its probabilistic characteristics are analyzed

Author Biographies

Vitaliy Babak, Institute of Engineering Thermophysics of NAS of Ukraine Zheliabova str., 2a, Kyiv, Ukraine, 03057

Doctor of Technical Sciences, Professor, Corresponding Member of NAS of Ukraine

Department of Thermometry, Diagnostics and Optimization in Energy

Artur Zaporozhets, Institute of Engineering Thermophysics of NAS of Ukraine Zheliabova str., 2a, Kyiv, Ukraine, 03057

PhD, Senior Researcher

Department of Thermometry, Diagnostics and Optimization in Energy

Oleg Nazarenko, Institute of Engineering Thermophysics of NAS of Ukraine Zheliabova str., 2a, Kyiv, Ukraine, 03057

Postgraduate student

Department of Thermometry, Diagnostics and Optimization in Energy

Oleksandr Redko, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

Leading Engineer

Service of main metrologist

References

Mashkinov, L. B., Vasil'ev, P. K., Batylin, V. V. (2008). Bystrodeystvuyushhiy diatermicheskyi bombovyi kalorimetr szhiganiya BKS-2H. Zavodskaya laboratoriya. Diagnostika materialov, 74 (4), 42–44.

Korchagina, E. N., Ermakova, E. V., Varganov, V. P. (2012). Kalorimetriya sgoraniya topliv. Mir izmerenyi, 2, 32–39.

Yang, X., Chen, S., Gao, S., Li, H., Shi, Q. (2002). Construction of a rotating-bomb combustion calorimeter and measurement of thermal effects. Instrumentation Science & Technology, 30 (3), 311–321. doi: 10.1081/ci-120013509

Peralta, D., Paterson, N. P., Dugwell, D. R., Kandiyoti, R. (2001). Coal blend performance during pulverised-fuel combustion: estimation of relative reactivities by a bomb-calorimeter test. Fuel, 80 (11), 1623–1634. doi: 10.1016/S0016-2361(01)00031-X

Yu, X., Zhou, C.-R., Han, X.-W., Li, G.-P. (2012). Study on thermodynamic properties of glyphosate by oxygen-bomb calorimeter and DSC. Journal of Thermal Analysis and Calorimetry, 111 (1), 943–949. doi: 10.1007/s10973-012-2384-5

Zhao, M.-R., Wang, H.-J., Wang, S.-Y., Yue, X.-X. (2014). Thermodynamic properties of diosgenin determined by oxygen-bomb calorimetry and DSC. Russian Journal of Physical Chemistry A, 88 (12), 2280–2282. doi: 10.1134/s003602441412022x

Lyon, R. E. (2015). Thermal dynamics of bomb calorimeters. Review of Scientific Instruments, 86 (12), 125103. doi: 10.1063/1.4936568

Overdeep, K. R., Weihs, T. P. (2015). Design and functionality of a high-sensitivity bomb calorimeter specialized for reactive metallic foils. Journal of Thermal Analysis and Calorimetry, 122 (2), 787–794. doi: 10.1007/s10973-015-4805-8

Inozemcev, Ya. O., Vorob'ev, A. B., Matyushin, Yu. N. (2010). Kalorimetr dlya kontrolya effektivnosti energoemkih sistem i kaloriynosti energoresursov. Vestnik Kazanskogo tehnologicheskogo universiteta, 1, 71–74.

Maksimuk, Yu. V., Fes'ko, V. V., Vasarenko, I. V., Dubovik, V. G. (2014). Metrologicheskoe obespechenie izmerenyi teploty sgoraniya tverdyh i zhidkih topliv. Metodi yzmerenyi, kontrolia, dyahnostyky, 2 (9), 67–74.

Vorob’ev, L. I. (2000). Konduktivnyi bombovyi kalorimetr dlya izmereniya teploty sgoraniya topliva. Kyiv, 185.

Vorob'ev, L. I., Grabov, L. N., Dekusha, L. V., Nazarenko, O. A., Shmatok, A. I. (2011). Opredelenie teplotvornoy sposobnosti biotoplivnyh smesey. Promyshlennaya teplotehnika, 33 (4), 87–93.

Babak, V. P., Berehun, V. S. et. al.; Babak, V. P. (Ed.) (2016). Aparatno-prohramne zabezpechennia monitorynhu obiektiv heneruvannia, transportuvannia ta spozhyvannia teplovoi enerhii. Kyiv: Instytut tekhnichnoi teplofizyky NAN Ukrainy, 298.

Burova, Z. A., Vorobyov, L. I., Nazarenko, O. O. (2016). Biofuels: the combustion heat analysis. SWorld Journal, 10 (11), 152–155.

Published

2017-08-30

Issue

Section

Technical Sciences