Synthesis of nomogram for the calculation of suboptimal chemical composition of the structural cast iron on the basis of the parametric description of the ultimate strength response surface

Authors

DOI:

https://doi.org/10.15587/2313-8416.2017.109175

Keywords:

structural cast iron, suboptimal chemical composition, regression equation, stationary region, ridge analysis, nomogram

Abstract

Based on the mathematical model describing the effect of carbon (C) and the carbon equivalent (CEQ) on the ultimate strength (US) of structural cast iron, a parametric description of the response surface US = US (С, СEQ) is performed. It is shown that, for the model considered in the form of a regression equation, the application of ridge analysis makes it possible to find a set of suboptimal values of the input variables (С, СEQ) that ensure the production of specified grades of structural cast iron. A graphical representation of such sets forms a nomogram for calculating the suboptimal chemical composition of structural cast iron

Author Biography

Dmitriy Demin, National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Foundry Production

References

Glinkov, G. M., Makovskiy, V. A., Lotman, S. L., Shapirovskiy, M. R. (1986). Proektirovanie sistem kontrolya i avtomaticheskogo regulirovaniya metallurgicheskih protsessov. Moscow: Metallurgiya, 352.

Demin, D. A., Pelikh, V. F., Ponomarenko, O. I. (1995). Optimization of the method of adjustment of chemical composition of flake graphite iron. Litejnoe Proizvodstvo, 7-8, 42–43.

Demin, D. A., Pelikh, V. F., Ponomarenko, O. I. (1998). Complex alloying of grey cast iron. Litejnoe Proizvodstvo, 10, 18–19.

Mohanad, M. K., Kostyk, V., Demin, D., Kostyk, K. (2016). Modeling of the case depth and surface hardness of steel during ion nitriding. Eastern-European Journal of Enterprise Technologies, 2 (5 (80)), 45–49. doi: 10.15587/1729-4061.2016.65454

Nosenko, T. I., Lysenko, T. V., Stanovskij, A. L. (2008). Adaptivnoe avtomatizirovannoe sinhroniziruyushchee proektirovanie sistemy "otlivka-peschanaya forma" NTI. Zbirnyk naukovykh prats' Odes'koyi natsional'noyi mors'koyi akademiyi, 13, 82–88.

Kostrova, G. V., Lysenko, T. V., Bondar, A. A. (2009). Metody samosinhronizacii dinamicheskih processov SAPR litejnogo proizvodstva KGV. Trudy Odesskogo politekhnicheskogo universiteta, 2 (32), 7–10.

Hrychikov, V. E., Koteshov, N. P. (1994). Vliyanie kombinirovannoy kokil'no-peschanoy liteynoy formy na zatverdevanie i formirovanie makrostruktury v krupnih otlivkah iz vysokoprochnogo chuguna. Liteynoe proizvodstvo, 12, 12.

Hrychikov, V. E. (1997). K voprosu obrazovaniya sharovidnogo grafita pri modifitsirovanii chuguna magniem. Liteynoe proizvodstvo, 2, 5–7.

Kosyachkov, V. A., Fesenko, M. A., Denisenko, D. V. (2004). Perspektivy proizvodstva bimetallicheskih otlivok modifitsirovaniem chuguna v liteynoy forme. Protsessy lit'ya, 4, 80–84.

Ivanova, L. A., Dotsenko, P. V., Prokopovich, I. V., Kasprevich, P. V. (1995). Povyshenie germetichnosti otlivok iz serogo chuguna. Puti povysheniya kachestva i ekonomichnosti liteynyh protsessov, 11–13.

Ivanova, L. A., Prokopovich, I. V., Kasprevich, P. V. (1996). Prichiny poteri germetichnosti otlivok iz serogo chuguna. Modelirovanie v prikladnyh nauchnyh issledovaniyah, 25–28.

Ivanova, L. A., Prokopovich, I. V. (1996). Zavisimost' germetichnosti serogo chuguna ot dliny grafitovyh vklyucheniy. Modelirovanie v prikladnyh nauchnyh issledovaniyah, 28–32.

Fesenko, M. A., Fesenko, A. N., Kosyachkov, V. A. (2010). Vnutriformennoe modifitsirovanie dlya polucheniya chugunnyh otlivok s differentsirovannymi strukturoy i svoystvami. Liteynoe proizvodstvo, 1, 7–13.

Fesenko, M. A., Kosyachkov, V. A., Fesenko, A. N. (2006). Issledovanie protsessov vnutriformennoy obrabotki chuguna metodami fizicheskogo modelirovaniya. Vіsnik Donbas'koї derzhavnoї mashinobudіvnoї akademіi, 3 (5), 7–14.

Endo, M., Yanase, K. (2014). Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons. Theoretical and Applied Fracture Mechanics, 69, 34–43. doi: 10.1016/j.tafmec.2013.12.005

Cheng, Y., Huang, F., Li, W., Liu, R., Li, G., Wei, J. (2016). Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Construction and Building Materials, 118, 164–170. doi: 10.1016/j.conbuildmat.2016.05.020

Borsato, T., Berto, F., Ferro, P., Carollo, C. (2016). Effect of in-mould inoculant composition on microstructure and fatigue behaviour of heavy section ductile iron castings. Procedia Structural Integrity, 2, 3150–3157. doi: 10.1016/j.prostr.2016.06.393

Fourlakidis, V., Diószegi, A. (2014). A generic model to predict the ultimate tensile strength in pearlitic lamellar graphite iron. Materials Science and Engineering: A, 618, 161–167. doi: 10.1016/j.msea.2014.08.061

Bai, Y., Luan, Y., Song, N., Kang, X., Li, D., Li, Y. (2012). Chemical Compositions, Microstructure and Mechanical Properties of Roll Core used Ductile Iron in Centrifugal Casting Composite Rolls. Journal of Materials Science & Technology, 28 (9), 853–858. doi: 10.1016/s1005-0302(12)60142-x

Demin, D. (2017). Strength analysis of lamellar graphite cast iron in the «carbon (C) – carbon equivalent (Ceq)» factor space in the range of C = (3,425-3,563) % and Ceq = (4,214-4,372) %. Technology Audit and Production Reserves, 1 (1 (33)), 24–32. doi: 10.15587/2312-8372.2017.93178

Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: 10.1615/jautomatinfscien.v44.i7.40

Demin, D. A. (2013). Mathematical modeling in the problem of selecting optimal control of obtaining alloys for machine parts in un-certainty conditions. Problems of mechanical engineering, 6, 15–23.

Published

2017-08-30

Issue

Section

Technical Sciences