Fireproof polymer materials based on olefin copolymers. Regulation of physical-mechanical characteristics

Authors

DOI:

https://doi.org/10.15587/2313-8416.2018.141413

Keywords:

modifier, ethylene-vinyl acetate copolymer, fire-retardant fillers, physical and mechanical characteristics, oxygen index

Abstract

Determination of the influence of the modifier on the physical and mechanical properties of fireproof materials based on olefinic polymers for the cable industry. Investigation of the physical and mechanical properties of polymer compositions was carried out on a tensile machine. The effect of the amount of a modifier on the increase in the physical and mechanical properties of EVA polymer compositions was studied. These characteristics are retained by more than 80 % after aging for all test samples. The effectiveness of directed regulation of the physical and mechanical properties of fireproof EVA compositions by a structural modifier is shown. The results of the studies make it possible to quickly adjust the formulation of the compositions

Author Biographies

Olena Chulieieva, YUZHCABLE WORKS, PJSC Avtohenna str., 7, Kharkiv, Ukraine, 61099

PhD, Chief of the scentific and technical center

Volodymyr Zolotaryov, YUZHCABLE WORKS, PJSC Avtohenna str., 7, Kharkiv, Ukraine, 61099

Doctor of Technical Sciences, Professor, General Director

References

Peshkov, I. B. (2013). Materialy kabel'nogo proizvodstva. Moscow: Mashinostroenie, 456.

Tirelli, D. (2013). Antipireny dlya kompozitov. The Chemical Journal, 1-2, 42–45.

Obzor mineral'nyh antipirenov-gidroksidov dlya bezgalogennyh kabel'nyh kompoziciy (2009). Kabel'-news, 8, 41–43.

Bezgalogennye ogneupornye kabeli. Available at: http://www.amtenergo.ru/statji/ognestoikie-kabeli.html

Lujan-Acosta, R., Sánchez-Valdes, S., Ramírez-Vargas, E., Ramos-DeValle, L. F., Espinoza-Martinez, A. B., Rodriguez-Fernandez, O. S. et. al. (2014). Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites. Materials Chemistry and Physics, 146(3), 437–445. doi: https://doi.org/10.1016/j.matchemphys.2014.03.050

Sonnier, R., Viretto, A., Dumazert, L., Longerey, M., Buonomo, S., Gallard, B. et. al. (2016). Fire retardant benefits of combining aluminum hydroxide and silica in ethylene-vinyl acetate copolymer (EVA). Polymer Degradation and Stability, 128, 228–236.doi: https://doi.org/10.1016/j.polymdegradstab.2016.03.030

Jeencham, R., Suppakarn, N., Jarukumjorn, K. (2014). Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Composites Part B: Engineering, 56, 249–253. doi: https://doi.org/10.1016/j.compositesb.2013.08.012

Yen, Y.-Y., Wang, H.-T., Guo, W.-J. (2012). Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites. Polymer Degradation and Stability, 97 (6), 863–869. doi: https://doi.org/10.1016/j.polymdegradstab.2012.03.043

Feng, C., Liang, M., Chen, W., Huang, J., Liu, H. (2015). Flame retardancy and thermal degradation of intumescent flame retardant EVA composite with efficient charring agent. Journal of Analytical and Applied Pyrolysis, 113, 266–273. doi: https://doi.org/10.1016/j.jaap.2015.01.021

Shevchenko, V. G. (2010). Osnovy fiziki polimernyh kompozicionnyh materialov. Moscow: MGU im. Lomonosova, 98.

Makarova, N. V., Trofimec, V. Ya. (2002). Statistika v Excel. Moscow: Finansy i statistika, 368.

Muhin, N. M., Buryndin, V. G. (2011). Opredelenie reologicheskih i fiziko-mekhanicheskih svoystv polimernyh materialov. Ekarenburg: UGLTU, 33.

Bobovich, B. B. (2009). Nemetallicheskie konstrukcionnye materialy. Moscow: MGIU, 384.

Published

2018-09-01

Issue

Section

Technical Sciences