DOI: https://doi.org/10.15587/2313-8416.2018.143412

Mathematical modeling of biogas lifting from the municipal solid waste polygon

Nina Rashkevich, Igor Goncharenko, Liudmula Anishenko, Leonid Pisnya, Serhii Petrukhin, Elena Serikova

Аннотация


The mathematical model specified height and time dependence of the center movement speed, proper size (radius), excess relative temperature, buoyancy of heated gas formations (biogas) with convective rise in atmospheric air above the municipal solid waste polygon has been developed in the paper. The numerical estimates of changes in the main parameters of heated gas formations for proper situations from the municipal solid waste polygon have been provided


Ключевые слова


biogas; mathematical model; municipal solid waste polygon; heated gas formations

Полный текст:

PDF (English)

Литература


Arhipova, G. I., Galushka, Y. O. (2009). Impact of household waste dumps on human health. Scientific bulletin NAU, 3, 217–219.

Dmitruk, O. O., Dmitruk, E. A. (2017). Physico-chemical essence of the formation process of landfill gas from municipal solid waste polygon. Digest of scientific works of NGU, 52, 335–341.

Popovich, V. V. (2012). Fire hazard of spontaneous landfills and municipal solid waste polygons. Fire hazard: digest of scientific works, 21, 140–147.

Analytical report on fire and its impact in Ukraine for 8 months of 2018 (2018). Ukrainian Research Institute of Civil Protection, 18.

Brushlinsky, N. N., Ahrens, M., Sokolov, S. V., Wagner, P. (2017). World Fire Statistics. International Association of Fire and Rescue Service, 56.

Shaimova, A. M., Nasirova, L. A., Yagafarova, G. G., Ilina, E. G., Fashutdinov, R. R. (2009). Development of mathematical model of biogas formation from municipal solid waste polygons. Oil and gas business, 7, 137–140.

Kamalan, H., Sabour, M., Shariatmad, N. (2011). A Review on Available Landfill Gas Models. Journal of Environmental Science and Technology, 4 (2), 79–92. doi: https://doi.org/10.3923/jest.2011.79.92

Figueroa, V. K., Cooper, C. D., Mackie, K. R. (2010). Estimating Landfill Greenhouse Gas Emissions from Measured Ambient Methane Concentrations and Dispersion Modeling. Tallahassee: Department of Civil and Environmental Engineering, University of Central Florida, 17.

Bilchedey, T. K. (2011). Modeling of biogas components transport and dispersion in the ambient air from the municipal solid waste polygons. Bulletin of RUDN. Series: Ecology and life safety, 1, 49–52.

Osipova, T. A., Remez, N. S. (2015). Prediction of biogas output and municipal solid waste polygon temperature on the basis of mathematical modeling. Bulletin of Michael Ostrogradsky KrNU, 3, 144–149.

Gostintsev, Yu. A., Shackih, Yu. V. (1987). On the generation mechanism of long-wave acoustic perturbations in the atmosphere by a pop-up cloud of explosion products. Physics of combustion and explosion, 2, 91–97.


Пристатейная библиография ГОСТ


Arhipova G. I., Galushka Y. O. Impact of household waste dumps on human health // Scientific bulletin NAU. 2009. Issue 3. P. 217–219.

Dmitruk O. O., Dmitruk E. A. Physico-chemical essence of the formation process of landfill gas from municipal solid waste polygon // Digest of scientific works of NGU. 2017. Issue 52. P. 335–341.

Popovich V. V. Fire hazard of spontaneous landfills and municipal solid waste polygons // Fire hazard: digest of scientific works. 2012. Issue 21. P. 140–147.

Analytical report on fire and its impact in Ukraine for 8 months of 2018. Ukrainian Research Institute of Civil Protection, 2018. 18 p.

World Fire Statistics / Brushlinsky N. N. et. al. International Association of Fire and Rescue Service, 2017. 56 p.

Development of mathematical model of biogas formation from municipal solid waste polygons / Shaimova A. M. et. al. // Oil and gas business. 2009. Issue 7. P. 137–140.

Kamalan H., Sabour M., Shariatmad N. A Review on Available Landfill Gas Models // Journal of Environmental Science and Technology. 2011. Vol. 4, Issue 2. P. 79–92. doi: https://doi.org/10.3923/jest.2011.79.92 

Figueroa V. K., Cooper C. D., Mackie K. R. Estimating Landfill Greenhouse Gas Emissions from Measured Ambient Methane Concentrations and Dispersion Modeling. Tallahassee: Department of Civil and Environmental Engineering, University of Central Florida, 2010. 17 p.

Bilchedey T. K. Modeling of biogas components transport and dispersion in the ambient air from the municipal solid waste polygons // Bulletin of RUDN. Series: Ecology and life safety. 2011. Issue 1. P. 49–52.

Osipova T. A., Remez N. S. Prediction of biogas output and municipal solid waste polygon temperature on the basis of mathematical modeling // Bulletin of Michael Ostrogradsky KrNU. 2015. Issue 3. P. 144–149.

Gostintsev Yu. A., Shackih Yu. V. On the generation mechanism of long-wave acoustic perturbations in the atmosphere by a pop-up cloud of explosion products // Physics of combustion and explosion. 1987. Issue 2. P. 91–97.







Copyright (c) 2018 Nina Rashkevich, Igor Goncharenko, Liudmula Anishenko, Leonid Pisnya, Serhii Petrukhin, Elena Serikova

Creative Commons License
Эта работа лицензирована Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)