DOI: https://doi.org/10.15587/2313-8416.2018.152949

Аналіз методів, моделей та алгоритмів персоналізації для розроблення рекомендаційних систем

Yuliia Kotliarova

Аннотация


В статті досліджуються методи, моделі та алгоритми персоналізації в цифровому середовищі. Наведена загальна характеристика типів рекомендаційних систем, їх методи, моделі та алгоритми, переваги та недоліки застосування. В роботі запропоновано застосування таксономії знань для створення інтелектуального додатку персоналізації для підтримки прийняття маркетингових рішень для підприємств у цифровому середовищі. Виділено додаткові джерела даних для створення рекомендацій


Ключевые слова


персоналізація; методи; моделі; алгоритми та таксономія знань для рекомендаційних систем

Полный текст:

PDF (Українська)

Литература


Kotler, F. (1990). Osnovy Marketinga [Basics of Marketing]. Moscow: Progress, 672.

Blackwell, R., Miniard, P., Engel, J. (2007). Povedenie potrebiteley [Consumer Behavior]. Saint Petersburg: Peter, 944.

Aleshina, I. V. (2006). Povedenie potrebiteley [Customer behaviour]. Moscow: Economist, 525.

Prokopenko, O. V., Troyan, M. Yu. (2008). Povedinka spozhivachiv [Consumer Behavior]. Kyiv: Tsentr uchbovoyi literatury, 176.

Kahneman, D., Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47 (2), 263–292. doi: http://doi.org/10.2307/1914185

Tversky, A., Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5 (4), 297–323. doi: http://doi.org/10.1007/bf00122574

Zhuravleva, G. P., Manokhina, N. V., Smagina, V. V. (Eds.) (2016). Povedencheskaya ekonomika: sovremennaya paradigma ekonomicheskogo razvitiya [Behavioral economics: the modern paradigm of economic development]. Moscow-Tambov: Izdatel'skiy dom TGU im. G. R. Derzhavina, 340.

Voronkova, O. V. (2012). Povedenye spozhyvachiv [Consumer Behavior]. Tambov: Yzd-vo FHBOU VPO «THTU», 84.

Linden, G., Smith, B., York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7 (1), 76–80. doi: http://doi.org/10.1109/mic.2003.1167344

Amatriain, X., Basilico, J. (2012). Netflix Recommendations: Beyond the 5 stars (Part 1). Netflix Technology Blog. URL: https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429

Corinna, U. (2018). Use Cases of Recommendation Systems in Business – Current Applications and Methods. Available at: https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/

Zlatyeva, D. (2016). Opyt personalizatsii kontenta v Le Boutique: kak intuitsiya pobezhdayet machine learning [The experience of personalizing content in Le Boutique: how intuition wins machine learning]. Available at: https://retailers.ua/news/tehnologii/5102-opyit-personalizatsii-kontenta-v-le-boutique-kak-intuitsiya-pobejdaet-machine-learning

Jones, M. T. (2014). Rekomendatel'nyye sistemy: Chast' 1. Vvedeniye v podkhody i algoritmy. Printsipy raboty rekomendatel'nykh mekhanizmov Interneta [Recommender systems, Part 1. Introduction to approaches and algorithms. How the Internet recommenders work]. IBM Corporation. Available at: https://www.ibm.com/developerworks/ru/library/os-recommender1/index.html

Tilahun, B., Awono, C., Batchakui, B. (2017). A Survey of State-of-the-art: Deep Learning Methods on Recommender System. International Journal of Computer Applications, 162 (10), 17–22. doi: http://doi.org/10.5120/ijca2017913361

Korbut, D. (2017). Recommendation System Algorithms. Main existing recommendation engines and how they work. Available at: https://statsbot.co/blog/recommendation-system-algorithms/

Chatti, M. A., Dakova, S., Thus, H., Schroeder, U. (2013). Tag-based collaborative filtering recommendation in personal learning environments. IEEE Transactions on Learning Technologies, 6 (4), 337–349. doi: http://doi.org/10.1109/tlt.2013.23

Pyatikop, E. E. (2013). Issledovaniye metoda kollaborativnoy fil'tratsii na osnove skhodstva elementov [The research of collaborative filtering method based on neighborhood elements]. Informatika, kíbernetika ta obchislyuval'na tekhníka, 109–114.

Machine Learning (8) – Recommender Engine: Collaborative Filtering (2015). Available at: oliviaklose.azurewebsites.net

Hofmann, T., Puzicha, J. (1999). Latent Class Models for Collaborative Filtering. IJCAI '99 Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 688–693.

Langseth, H., Nielsen, T. D. (2012). A latent model for collaborative filtering. International Journal of Approximate Reasoning, 53 (4), 447–466. doi: http://doi.org/10.1016/j.ijar.2011.11.002

Shams, B., Haratizadeh, S. (2017). Graph-based collaborative ranking. Expert Systems with Applications, 67, 59–70. doi: http://doi.org/10.1016/j.eswa.2016.09.013

Swathi, S., Sreeja, D., Shelbi, J., Seetha, P. (2017). Various Methods of Using Content-Based Filtering Algorithm for Recommender Systems. International Journal of Innovative Research in Science, Engineering and Technology, 6 (2), 1606–1613.

Asanov, D. (2004). Algorithms and Methods in Recommender Systems. Berlin: Institute of Technology. Available at: https://www.snet.tu-berlin.de/fileadmin/fg220/courses/SS11/snet-project/recommender-systems_asanov.pdf

Lorenzi, F., Ricci, F. (2005). Case-based recommender systems: a unifying view. ITWP'03 Proceedings of the 2003 international conference on Intelligent Techniques for Web Personalization. Acapulco: Springer-Verlag, Berlin: Heidelberg, 89–113. doi: http://doi.org/10.1007/11577935_5

Marung, U., Theera-Umpon, N., Auephanwiriyakul, S. (2016). Top-N Recommender Systems Using Genetic Algorithm-Based Visual-Clustering Methods. MDPI Reference List and Citations Style Guide. Basel,

Feng, D. (2015). Utility-based Recommender Systems Using Implicit Utility and Genetic Algorithm. International Conference on Mechatronics, Electronic, Industrial and Control Engineering, 860–864. doi: http://doi.org/10.2991/meic-15.2015.197

Brusilovsky, P., Kobsa, A., Nejdl, W. (2007). The adaptive web: methods and strategies of web personalization. Heidelberg: Springer-Verlag Berlin, 762.

Dent, A. (2015). An In-Depth Look At Second-Party Data For Digital Marketers. Available at: https://marketingland.com/second-party-data-digital-marketers-128254

Sonntag, D. (2015). ISMAR Tutorial on Intelligent User Interfaces, Proceedings of ISMAR 2015. Related DFKI Technical Report.


Пристатейная библиография ГОСТ


Котлер Ф. Основы маркетинга. Москва: Прогресс, 1990. 672 с.

Блэкуэлл Р., Миниард П., Энджел Дж. Поведение потребителей: уч. Санкт-Петербург: Питер, 2007. 944 с.

Алешина И. В. Поведение потребителей: уч. Москва: Экономистъ, 2006. 525 с.

Прокопенко О. В., Троян М. Ю. Поведінка споживачів: навч. пос. Київ: Центр учбової літератури, 2008. 176 с.

Kahneman D., Tversky A. Prospect Theory: An Analysis of Decision under Risk // Econometrica. 1979. Vol. 47, Issue 2. P. 263–292. doi: http://doi.org/10.2307/1914185 

Tversky A., Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty // Journal of Risk and Uncertainty. 1992. Vol. 5, Issue 4. P. 297–323. doi: http://doi.org/10.1007/bf00122574 

Поведенческая экономика: современная парадигма экономического развития: монография / ред. Журавлёвa Г. П., Манохинa Н. В., Смагинa В. В. Москва-Тамбов: Издательский дом ТГУ им. Г.Р. Державина, 2016. 340 c.

Поведение потребителей: уч. пос. Тамбов: Изд-во ФГБОУ ВПО «ТГТУ», 2012. 84 с.

Linden G., Smith B., York J. Amazon.com recommendations: item-to-item collaborative filtering // IEEE Internet Computing. 2003. Vol. 7, Issue 1. P. 76–80. doi: http://doi.org/10.1109/mic.2003.1167344 

Amatriain X., Basilico J. Netflix Recommendations: Beyond the 5 stars (Part 1). Netflix Technology Blog. 2012. URL: https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429

Corinna U. Use Cases of Recommendation Systems in Business – Current Applications and Methods. 2018. URL: https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/

Златьева Д. Опыт персонализации контента в Le Boutique: как интуиция побеждает machine learning. 2016. URL: https://retailers.ua/news/tehnologii/5102-opyit-personalizatsii-kontenta-v-le-boutique-kak-intuitsiya-pobejdaet-machine-learning

Джонс М. Т. Рекомендательные системы: Часть 1. Введение в подходы и алгоритмы. Принципы работы рекомендательных механизмов Интернета // IBM Corporation. 2014. URL: https://www.ibm.com/developerworks/ru/library/os-recommender1/index.html

Tilahun B., Awono C., Batchakui B. A Survey of State-of-the-art: Deep Learning Methods on Recommender System // International Journal of Computer Applications. 2017. Vol. 162, Issue 10. P. 17–22. doi: http://doi.org/10.5120/ijca2017913361 

Korbut D. Recommendation System Algorithms. Main existing recommendation engines and how they work. 2017. URL: https://statsbot.co/blog/recommendation-system-algorithms/

Tag-based collaborative filtering recommendation in personal learning environments / Chatti M. A. et. al. // IEEE Transactions on Learning Technologies. 2013. Vol. 6, Issue 4. P. 337–349. doi: http://doi.org/10.1109/tlt.2013.23 

Пятикоп Е. Е. Исследование метода коллаборативной фильтрации на основе сходства элементов // Інформатика, кібернетика та обчислювальна техніка. 2013. С. 109–114.

Machine Learning (8) – Recommender Engine: Collaborative Filtering. 2015. URL: oliviaklose.azurewebsites.net

Hofmann T., Puzicha J. Latent Class Models for Collaborative Filtering // IJCAI '99 Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 1999. P. 688–693.

Langseth H., Nielsen T. D. A latent model for collaborative filtering // International Journal of Approximate Reasoning. 2012. Vol. 53, Issue 4. P. 447–466. doi: http://doi.org/10.1016/j.ijar.2011.11.002 

Shams B., Haratizadeh S. Graph-based collaborative ranking // Expert Systems with Applications. 2017. Vol. 67. P. 59–70. doi: http://doi.org/10.1016/j.eswa.2016.09.013 

Various Methods of Using Content-Based Filtering Algorithm for Recommender Systems / Swathi S. et. al. // International Journal of Innovative Research in Science, Engineering and Technology. 2017. Vol. 6, Issue 2. P. 1606–1613.

Asanov D. Algorithms and Methods in Recommender Systems. Berlin: Institute of Technology, 2004. URL: https://www.snet.tu-berlin.de/fileadmin/fg220/courses/SS11/snet-project/recommender-systems_asanov.pdf

Lorenzi F., Ricci F. Case-based recommender systems: a unifying view // ITWP'03 Proceedings of the 2003 international conference on Intelligent Techniques for Web Personalization. Acapulco: Springer-Verlag, Berlin: Heidelberg, 2005. P. 89–113. doi: http://doi.org/10.1007/11577935_5 

Marung U., Theera-Umpon N., Auephanwiriyakul S. Top-N Recommender Systems Using Genetic Algorithm-Based Visual-Clustering Methods // MDPI Reference List and Citations Style Guide. Basel, 2016.

Feng D. Utility-based Recommender Systems Using Implicit Utility and Genetic Algorithm // International Conference on Mechatronics, Electronic, Industrial and Control Engineering. 2015. P. 860–864. doi: http://doi.org/10.2991/meic-15.2015.197 

Brusilovsky P., Kobsa A., Nejdl W. The adaptive web: methods and strategies of web personalization. Heidelberg: Springer-Verlag Berlin, 2007. 762 p.

Dent A. An In-Depth Look At Second-Party Data For Digital Marketers. 2015. URL: https://marketingland.com/second-party-data-digital-marketers-128254

Sonntag D. ISMAR Tutorial on Intelligent User Interfaces, Proceedings of ISMAR 2015. Related DFKI Technical Report. 2015.







Copyright (c) 2018 Yuliia Kotliarova

Creative Commons License
Эта работа лицензирована Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)