DOI: https://doi.org/10.15587/2313-8416.2019.155454

Surface composition of the Co-Cr based alloys after different lab denture treatments using auger electron spectroscopy

Mykhaylo Vasylyev, Svetlana Voloshko, Petr Gurin

Аннотация


The aim of this work is analysis of dental Co-Cr-based alloy surface chemical composition after several technological procedures adopted in the dental practice using Auger Electron Spectroscopy (AES). This analysis was performed after casting the alloy samples were subjected to the following sequential treatments: cutting on by the diamond wheel, electric-spark cutting and grinding, electropolishing, exposure in artificial saliva after 2 days after electropolishing


Ключевые слова


surface treatment; Co-Cr based dental alloys; Auger Electron Spectroscopy; artificial saliva

Полный текст:

PDF (English)

Литература


Gibon, E., Amanatullah, D. F., Loi, F., Pajarinen, J., Nabeshima, A., Yao, Z. et. al. (2016). The biological response to orthopaedic implants for joint replacement: Part I: Metals. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105 (7), 2162–2173. doi: http://doi.org/10.1002/jbm.b.33734

Wataha, J., Schmalz, G. (2009). Dental alloys. Biocompatibility of dental materials. Berlin-Heidelberg: Springer, 221–254. doi: http://doi.org/10.1007/978-3-540-77782-3_8

Podrez-Radziszewska, M., Haimann, K., Dudziński, W., Morawska-Soltysik, M. (2010). Characteristic of intermetallic phases in cast dental CoCrMo alloy. Archives of Foundry Engineering, 10 (3), 51–59.

Al Jabbari, Y. S. (2014). Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. The Journal of Advanced Prosthodontics, 6 (2), 138–145. doi: http://doi.org/10.4047/jap.2014.6.2.138

Kretz, E., Berthod, P., Schweitzer, T. (2018). Corrosion Behavior in a Neutral Artificial Saliva of Several Binary Co-Cr Alloys with Various Chromium Contents. Journal of Dental and Craniofacial Research, 3 (1). doi: http://doi.org/10.21767/2576-392x.100021

Ionita, D., Golgovici, F., Mazare, A., Badulescu, M., Demetrescu, I., Pandelea-Dobrovicescu, G.-R. (2018). Corrosion and antibacterial characterization of Ag-DLC coatingon a new CoCrNbMoZr dental alloy. Materials and Corrosion, 69 (10), 1403–1411. doi: http://doi.org/10.1002/maco.201810147

Huang, P., López, H. F. (1999). Athermal ε-martensite in a Co–Cr–Mo alloy: grain size effects. Materials Letters, 39 (4), 249–253. doi: http://doi.org/10.1016/s0167-577x(99)00022-1

Petrov, Y. N., Prokopenko, G. I., Mordyuk, B. N., Vasylyev, M. A., Voloshko, S. M., Skorodzievski, V. S., Filatova, V. S. (2016). Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy. Materials Science and Engineering: C, 58, 1024–1035. doi: http://doi.org/10.1016/j.msec.2015.09.004

Vickerman, J. C., Gilmore, I. S. (Eds.) (2009). Surface Analysis: The Principal Techniques. John Wiley & Sons, Ltd. doi: http://doi.org/10.1002/9780470721582

Powell, C. J., Jablonski, A., Tilinin, I. S., Tanuma, S., Penn, D. R. (1999). Surface sensitivity of Auger-electron spectroscopy and X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 98-99, 1–15. doi: http://doi.org/10.1016/s0368-2048(98)00271-0

Baran, G. (1984). Auger Chemical Analysis of Oxides on Ni-Cr Alloys. Journal of Dental Research, 63 (1), 76–80. doi: http://doi.org/10.1177/00220345840630012001

Leinenbach, C., Eifler, D. (2006). Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media. Biomaterials, 27 (8), 1200–1208. doi: http://doi.org/10.1016/j.biomaterials.2005.08.012


Пристатейная библиография ГОСТ


The biological response to orthopaedic implants for joint replacement: Part I: Metals / Gibon E. et. al. // Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2016. Vol. 105, Issue 7. P. 2162–2173. doi: http://doi.org/10.1002/jbm.b.33734 

Wataha J., Schmalz G. Dental alloys // Biocompatibility of dental materials. Berlin-Heidelberg: Springer, 2009. P. 221–254. doi: http://doi.org/10.1007/978-3-540-77782-3_8 

Characteristic of intermetallic phases in cast dental CoCrMo alloy / Podrez-Radziszewska M. et. al. // Archives of Foundry Engineering. 2010. Vol. 10, Issue 3. P. 51–59.

Al Jabbari Y. S. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature // The Journal of Advanced Prosthodontics. 2014. Vol. 6, Issue 2. P. 138–145. doi: http://doi.org/10.4047/jap.2014.6.2.138 

Kretz E., Berthod P., Schweitzer T. Corrosion Behavior in a Neutral Artificial Saliva of Several Binary Co-Cr Alloys with Various Chromium Contents // Journal of Dental and Craniofacial Research. 2018. Vol. 3, Issue 1. doi: http://doi.org/10.21767/2576-392x.100021 

Corrosion and antibacterial characterization of Ag-DLC coatingon a new CoCrNbMoZr dental alloy / Ionita D. et. al. // Materials and Corrosion. 2018. Vol. 69, Issue 10. P. 1403–1411. doi: http://doi.org/10.1002/maco.201810147 

Huang P., López H. F. Athermal ε-martensite in a Co–Cr–Mo alloy: grain size effects // Materials Letters. 1999. Vol. 39, Issue 4. P. 249–253. doi: http://doi.org/10.1016/s0167-577x(99)00022-1 

Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy / Petrov Y. N. et. al. // Materials Science and Engineering: C. 2016. Vol. 58. P. 1024–1035. doi: http://doi.org/10.1016/j.msec.2015.09.004 

Surface Analysis: The Principal Techniques / ed. by Vickerman J. C., Gilmore I. S. John Wiley & Sons, Ltd, 2009. doi: http://doi.org/10.1002/9780470721582 

Surface sensitivity of Auger-electron spectroscopy and X-ray photoelectron spectroscopy / Powell C. J. et. al. // Journal of Electron Spectroscopy and Related Phenomena. 1999. Vol. 98-99. P. 1–15. doi: http://doi.org/10.1016/s0368-2048(98)00271-0 

Baran G. Auger Chemical Analysis of Oxides on Ni-Cr Alloys // Journal of Dental Research. 1984. Vol. 63, Issue 1. P. 76–80. doi: http://doi.org/10.1177/00220345840630012001 

Leinenbach C., Eifler D. Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media // Biomaterials. 2006. Vol. 27, Issue 8. P. 1200–1208. doi: http://doi.org/10.1016/j.biomaterials.2005.08.012 







Copyright (c) 2019 Mykhaylo Vasylyev, Svetlana Voloshko, Petr Gurin

Creative Commons License
Эта работа лицензирована Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)