The effect of physical-chemical and technological factors on the process of calcium oxide hydration hardening

Authors

  • Ярослав Богданович Якимечко Lviv Polytechnic University, Ukraine https://orcid.org/0000-0002-4406-0094
  • Богдан Богданович Чеканський Lviv Polytechnic University Bandery str. , Lviv, Ukraine, 79013, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2014.31493

Keywords:

kryohydration, hydration activity, potlandite stone, morphology of crystals, energy content of the system, peptization, contraction, vibroactivation

Abstract

Some regularities of hydration activity of calcium oxide are considered in the article. The process of structure formation of calcium oxide under low temperature is investigated. The thermodynamic evaluation of the strength of portlandite stone by method of the energy reserve calculation is conducted. It is established, that during the quicklime hardening at limiting the volume, the morphology of the crystals Са(ОН)2 is changed. Hydration hardening of calcium oxide is also occurred in a vacuum.

Author Biographies

Ярослав Богданович Якимечко, Lviv Polytechnic University

Professor

Department of Chemical technology of silicates

Богдан Богданович Чеканський, Lviv Polytechnic University Bandery str. , Lviv, Ukraine, 79013

Master

Department of Chemical technology of silicates

References

Sanitsky, M. A. (1990). Some questions of the crystal chemistry of cement minerals. Kiev. UMK VO, 64.

Klein, D. H., Smith, M. D. (1968). Homogeneous nucleation of calcium hydroxide. Talanta, 15 (2), 229–231. doi: 10.1016/0039-9140(68)80227-9

Moschansky, N. A. (1956). Idea of the nature of mineral binders based on Mendeleev's periodic law and the doctrine of the metastable states. In book: Proceedings of the meeting on the chemistry of cement, 114–125.

Shpynova, L. G., Chih, V. I., Sanitsky, M. A. (1981). Physico-chemical basis of structure formation of cement stone. Lviv. Vyshcha shkola, 160.

Uman, N. I., Svatovskaya, L. B., Ovchinnikova, V. P. (1998). Hardening cement minerals at low temperatures. Cement and its Applications, 5(6), 26–28.

Zeilnhofer, J., Ploetz, C. (1998). Vollautomatische Kalk-Trockenloschanlage. Zement-Kalk-Gips, 51, 494–499.

Wolter, A., Luger, S., Schaefer, G. (2004). The kinetics of the hydration of quicklime. Cement Lime Gypsum, 8, 60–69.

Ramachandran, V. S., Sereda, P. J., Feldman, R. F. (1964). Mechanism of Hydration of Calcium Oxide. Nature, 201, 288–289. doi: 10.1038/201288a0

Yakymechko, Y. B., Voloshynech, V. A. (2012). The kinetic parameters of hydration of CaO in electrolyte solutions. Technology and design. Electronic issue, 1(2), 11. Available at: http://www.nbuv.gov.ua/e-journals/td/2012_1/2012-1.html

Galmarini, S., Aimable, A., Ruffray, N., Bowen, P. (2011). Changes in portlandite morphology with solvent composition: Atomistic simulations and experiment. Cement and Concrete Research, 41 (12), 1330–1338. doi: 10.1016/j.cemconres.2011.04.009

Lõhmus, H., Räni, A., Kallavus, U., Reiska, R. (2002). Trend to the Production of Calcium Hydroxide and Precipitated Calcium Carbonate with Defined Properties. The Canadian Journal of Chemical Engineering, 80 (5), 911–919. doi: 10.1002/cjce.5450800514

Osin, B. V., Volkov, V. V., Didelkul, A. S. (1972). Investigation of the processes of structure formation and destruction of lime-sand concrete curing stage hydration of lime. Izvestia vuzov. Construction and architecture, 1, 70–73.

Gyitur, V. I. (1991). Activator of cement. Building materials and constructions, 4, 34.

Published

2014-12-22

Issue

Section

Technical Sciences