About a mechanism of the influence of shear stress for viscosity of the blood in vessels of small diameter


  • Лев Николаевич Катюхин Sechenov Institute of Evolutionary Physiology and Biochemistry 194223 Russia, Saint-Petersburg, pr. Torez 44, Russian Federation




sigma-effect, viscosity, erythrocytes, deformability, water pores, shear stress


It is proposed a physiological and experimentally confirmed explanation of Fåhraeus-Lindqvist-effect in capillaries using the profile analyses of osmotic deformability of red blood cells. It was shown the dose-dependent change of the erythrocytes deformability in the stage of isotropic spheres after forming artificial water pores (nystatin) and occlusion (PbCl2) of available pores. The Sigma-effect reducing of hematocrit and viscosity in a shear flow of blood through the vessels of a small diameter was conditioned by the interchange of liquid phase between the erythrocyte and the plasma.

Author Biography

Лев Николаевич Катюхин, Sechenov Institute of Evolutionary Physiology and Biochemistry 194223 Russia, Saint-Petersburg, pr. Torez 44

Doctor of Biological Sciences

Laboratory of Comparative Biochemistry enzymes

Leading researcher


Fåhraeus, R., Lindqvist, T. (1931). The viscosity of the blood in narrow capillary tubes. Am. J. Physiol., 96, 562–568.

Medvedev, A. E. (2013). Dvuhfaznaja model' techenija krovi. Rossijskij zhurnal biomehaniki, 17, 4 (62), 22–36.

Moyers-Gonzalez, M., Owens, R. G., Fang, J. (2008). A non-homogeneous constitutive model for human blood. Part. 1. Model derivation and steady flow. Journal of Fluid Mechanics, 617, 327–453. doi: 10.1017/s002211200800428x

Pries, A. R., Secomb, T. W.; Tuma, R. F., Dura, W. N., Ley, K. (Eds.) (2008). Blood Flow in Microvascular Networks. In: Handbook of Physiology: Microcirculation. Аcademic Press, 3–36. doi: 10.1016/b978-0-12-374530-9.00001-2

Sharan, M., Popel, A. S. (2001). A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology, 38, 415–428.

Ponomarenko, G. N., Turkovskij, I. I. (2006). Biofizicheskie osnovy fizioterapii. Moscow: Medicine, 176.

Huo, Y., Kassab, G. S. (2009). Effect of compliance and hematocrit on wall shear stress in a model of the entire coronary arterial tree. Journal of Applied Physiology, 107 (2), 500–505. doi: 10.1152/japplphysiol.91013.2008

Xue, X., Patel, M. K., Kersaudy-Kerhoas, M., Bailey, C., Desmulliez, M. P. (2011). Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator. Computer Methods in Biomechanics and Biomedical Engineering, 14 (6), 549–560. doi: 10.1080/10255842.2010.485570

Johnson, R. M. (1989). Ektacytometry of red blood cells. Methods in Enzymology, 173 (T), 35–54. doi: 10.1016/s0076-6879(89)73004-4

Charm, S. E., Kurland, G. S. (1972). Blood Rheology. In: Cardiovascular fluid dynamics. Vol. 2. Acad. press, London & New York, 202.

Schmid-Schönbein, H. (1981). Factors promoting and preventing the fluidity of blood. Microcirculation. Current physiologic, medical, and surgical concepts. Acad press: N. Y., London, Toronto, Sydney, San-Francisco, 317.

Tsai, S. T., Zhang, R. B., Verkman, A. S. (1991). High channel-mediated water permeability in rabbit erythrocytes: characterization in native cells and expression in Xenopus oocytes. Biochemistry, 30, 2087–2092. doi: 10.1021/bi00222a013

Katsu, T., Okada, S., Imamura, T., Komagoe, K., Masuda, K., Inoue, T., Nakao, S. (2008). Precise size determination of amphotericin B and nystatin channels formed in erythrocyte and liposomal membranes based on osmotic protection experiments. Analytical Sciences, 24 (12), 1551–1556. doi: 10.2116/analsci.24.1551

Ivens, I., Skejlak, R. (1982). Mehanika i termodinamika biologicheskih membran. Moscow: Mir, 304.

Clarc, M. R., Mohandas, N., Shohet, S. B. (1983). Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance. Blood, 61 (5), 899–910.

Bossi, D., Russo, M. (1996). Hemolytic anemias due to disorders of red cell membrane skeleton. Molecular Aspects of Medicine, 17 (2), 171–188. doi: 10.1016/0098-2997(96)88346-4

Johnson, R. M., Ravindranath, Y. (1996). Osmotic scan ektacytometry in clinical diagnosis. Journal of Pediatric Hematology/Oncology, 18 (2), 122–129. doi: 10.1097/00043426-199605000-00005

Streekstra, G. J., Dobbe, J. G., Hoekstra, A. G. (2010). Quantification of the fraction poorly deformable red blood cells using ektacytometry. Optics Express, 18 (13), 14173–14182. doi: 10.1364/oe.18.014173

Tillmann, W. (1986). Reduced deformability of erythrocytes as a common denominator of hemolytic anemias. Wien. Med. Wochenschr., 136, 14–16.